Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 15908, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151260

ABSTRACT

The current body of sprinting biomechanics literature together with the front-side mechanics coaching framework provide various technique recommendations for improving performance. However, few studies have attempted to systematically explore technique modifications from a performance enhancement perspective. The aims of this investigation were therefore to explore how hypothetical technique modifications affect accelerative sprinting performance and assess whether the hypothetical modifications support the front-side mechanics coaching framework. A three-dimensional musculoskeletal model scaled to an international male sprinter was used in combination with direct collocation optimal control to perform (data-tracking and predictive) simulations of the preliminary steps of accelerative sprinting. The predictive simulations differed in the net joint moments that were left 'free' to change. It was found that the 'knee-free' and 'knee-hip-free' simulations resulted in the greatest performance improvements (13.8% and 21.9%, respectively), due to a greater knee flexor moment around touchdown (e.g., 141.2 vs. 70.5 Nm) and a delayed and greater knee extensor moment during stance (e.g., 188.5 vs. 137.5 Nm). Lastly, the predictive simulations which led to the greatest improvements were also found to not exhibit clear and noticeable front-side mechanics technique, thus the underpinning principles of the coaching framework may not be the only key aspect governing accelerative sprinting.


Subject(s)
Running , Acceleration , Biomechanical Phenomena , Humans , Knee , Knee Joint , Male
2.
Scand J Med Sci Sports ; 30(8): 1387-1397, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32285541

ABSTRACT

Sprint ability develops nonlinearly across childhood and adolescence. However, the underpinning ground reaction force (GRF) production is not fully understood. This study aimed to uncover the kinetic factors that explain these maturation-related sprint performance differences in Japanese boys and girls. A total of 153 untrained schoolchildren (80 boys, 73 girls) performed two 50-m maximal effort sprints over a 52-force-platform system embedded in an indoor track. Maturity offset (years from peak height velocity; PHV) was estimated using anthropometric data and used to categorise the children into six-year-long maturation groups (from group 1 [5.5-4.5 years before PHV] to group 6 [0.5 years before to 0.5 years after PHV). Maximum and mean step-averaged velocities across 26 steps were compared across consecutive maturation groups, with further GRF analysis (means and waveforms [statistical parametric mapping]) performed when velocity differences were observed. For boys, higher maximum velocities (effect size ± 90% CI = 1.63 ± 0.69) were observed in maturation group 2 (4.5-3.5 years before PHV) compared to group 1 (5.5-4.5 years before PHV), primarily attributable to higher antero-posterior GRFs across shorter ground contacts. Maximum velocities increased from maturation group 4 (2.5-1.5 years before PHV) to group 5 (1.5-0.5 years before PHV) in the girls (effect size ± 90% CI = 1.00 ± 0.78), due to longer ground contacts rather than higher GRFs per se. Waveform analyses revealed more effective reversal of braking forces and higher propulsive forces (e.g. 14%-77% of stance 4), particularly for comparisons involving boys, which suggested potentially enhanced stretch-shortening ability. Youth sport practitioners should consider these maturation-specific alterations when evaluating young athletes' sprint abilities.


Subject(s)
Acceleration , Child Development/physiology , Running/physiology , Sexual Maturation/physiology , Biomechanical Phenomena , Child , Female , Humans , Kinetics , Male
3.
Sports Biomech ; 18(4): 437-447, 2019 Aug.
Article in English | MEDLINE | ID: mdl-29562837

ABSTRACT

Athletes in inner lanes may be disadvantaged during athletic sprint races containing a bend portion because of the tightness of the bend. We empirically investigated the veracity of modelled estimates of this disadvantage and the effect of running lane on selected kinematic variables. Three-dimensional video analysis was conducted on nine male athletes in lanes 8, 5 and 2 of the bend of an outdoor track (radii: 45.10, 41.41 and 37.72 m, respectively). There was over 2% (p < 0.05) reduction in mean race velocity from lane 8 (left step 9.56 ± 0.43 m/s, right step: 9.49 ± 0.41 m/s) to lane 5 (left step: 9.36 ± 0.51 m/s, right step: 9.30 ± 0.51 m/s), with only slight further reductions from lane 5 to lane 2 (left step: 9.34 ± 0.61 m/s, right step: 9.30 ± 0.63 m/s). Race velocity decreased mainly because of reductions in step frequency as radius decreased. These unique data demonstrate the extent of the disadvantage of inner lane allocation during competition may be greater than previously suspected. Variations in race velocity changes might indicate some athletes are better able to accommodate running at tighter radii than others, which should have implications for athletes' training.


Subject(s)
Athletic Performance/physiology , Running/physiology , Track and Field/physiology , Biomechanical Phenomena , Competitive Behavior/physiology , Humans , Male , Models, Theoretical , Time and Motion Studies , Video Recording , Young Adult
4.
Scand J Med Sci Sports ; 28(12): 2527-2535, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30230037

ABSTRACT

Forces applied to the ground during sprinting are vital to performance. This study aimed to understand how specific aspects of ground reaction force waveforms allow some individuals to continue to accelerate beyond the velocity plateau of others. Twenty-eight male sprint specialists and 24 male soccer players performed maximal-effort 60-m sprints. A 54-force-plate system captured ground reaction forces, which were used to calculate horizontal velocity profiles. Touchdown velocities of steps were matched (8.00, 8.25, and 8.50 m/s), and the subsequent ground contact forces were analyzed. Mean forces were compared across groups and statistical parametric mapping (t tests) assessed for differences between entire force waveforms. When individuals contacted the ground with matched horizontal velocity, ground contact durations were similar. Despite this, sprinters produced higher average horizontal power (15.7-17.9 W/kg) than the soccer players (7.9-11.9 W/kg). Force waveforms did not differ in the initial braking phase (0%-~20% of stance). However, sprinters attenuated eccentric force more in the late braking phase and produced a higher antero-posterior component of force across the majority of the propulsive phase, for example, from 31%-82% and 92%-100% of stance at 8.5 m/s. At this velocity, resultant forces were also higher (33%-83% and 86%-100% of stance) and the force vector was more horizontally orientated (30%-60% and 95%-98% of stance) in the sprinters. These findings illustrate the mechanisms which allowed the sprinters to continue accelerating beyond the soccer players' velocity plateau. Moreover, these force production demands provide new insight regarding athletes' strength and technique training requirements to improve acceleration at high velocity.


Subject(s)
Acceleration , Biomechanical Phenomena , Running/physiology , Soccer/physiology , Athletes , Athletic Performance , Humans , Male , Young Adult
5.
Sports Med Open ; 4(1): 24, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29869300

ABSTRACT

BACKGROUND: The study of human movement within sports biomechanics and rehabilitation settings has made considerable progress over recent decades. However, developing a motion analysis system that collects accurate kinematic data in a timely, unobtrusive and externally valid manner remains an open challenge. MAIN BODY: This narrative review considers the evolution of methods for extracting kinematic information from images, observing how technology has progressed from laborious manual approaches to optoelectronic marker-based systems. The motion analysis systems which are currently most widely used in sports biomechanics and rehabilitation do not allow kinematic data to be collected automatically without the attachment of markers, controlled conditions and/or extensive processing times. These limitations can obstruct the routine use of motion capture in normal training or rehabilitation environments, and there is a clear desire for the development of automatic markerless systems. Such technology is emerging, often driven by the needs of the entertainment industry, and utilising many of the latest trends in computer vision and machine learning. However, the accuracy and practicality of these systems has yet to be fully scrutinised, meaning such markerless systems are not currently in widespread use within biomechanics. CONCLUSIONS: This review aims to introduce the key state-of-the-art in markerless motion capture research from computer vision that is likely to have a future impact in biomechanics, while considering the challenges with accuracy and robustness that are yet to be addressed.

6.
J Sports Sci ; 36(17): 1930-1936, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29336211

ABSTRACT

Athletes initiating skeleton runs differ in the number of steps taken before loading the sled. We aimed to understand how experimentally modifying loading distance influenced sled velocity and overall start performance. Ten athletes (five elite, five talent; 67% of all national athletes) underwent two to four sessions, consisting of two dry-land push-starts in each of three conditions (preferred, long and short loading distances). A magnet encoder on the sled wheel provided velocity profiles and the overall performance measure (sled acceleration index). Longer pre-load distances (12% average increase from preferred to long distances) were related to higher pre-load velocity (r = 0.94), but lower load effectiveness (r = -0.75; average reduction 29%). Performance evaluations across conditions revealed that elite athletes' preferred distance push-starts were typically superior to the other conditions. Short loading distances were generally detrimental, whereas pushing the sled further improved some talent-squad athletes' performance. Thus, an important trade-off between generating high pre-load velocity and loading effectively was revealed, which coaches should consider when encouraging athletes to load later. This novel intervention study conducted within a real-world training setting has demonstrated the scope to enhance push-start performance by altering loading distance, particularly in developing athletes with less extensive training experience.


Subject(s)
Athletic Performance/physiology , Running/physiology , Sports/physiology , Acceleration , Female , Humans , Male , Motor Skills/physiology , Task Performance and Analysis , Young Adult
7.
Int J Sports Physiol Perform ; 13(4): 412-419, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-28872389

ABSTRACT

PURPOSE: Athletes' force-power characteristics influence sled velocity during the skeleton start, which is a crucial determinant of performance. This study characterized force-power profile changes across an 18-month period and investigated the associations between these changes and start performance. METHODS: Seven elite- and 5 talent-squad skeleton athletes' (representing 80% of registered athletes in the country) force-power profiles and dry-land push-track performances were assessed at multiple time points over two 6-month training periods and one 5-month competition season. Force-power profiles were evaluated using an incremental leg-press test (Keiser A420), and 15-m sled velocity was recorded using photocells. RESULTS: Across the initial maximum strength development phases, increases in maximum force (Fmax) and decreases in maximum velocity (Vmax) were typically observed. These changes were greater for talent (23.6% and -12.5%, respectively) compared with elite (6.1% and -7.6%, respectively) athletes. Conversely, decreases in Fmax (elite -6.7% and talent -10.3%) and increases in Vmax (elite 8.1% and talent 7.7%) were observed across the winter period, regardless of whether athletes were competing (elite) or accumulating sliding experience (talent). When the training emphasis shifted toward higher-velocity, sprint-based exercises in the second training season, force-power profiles seemed to become more velocity oriented (higher Vmax and more negative force-velocity gradient), which was associated with greater improvements in sled velocity (r = .42 and -.45, respectively). CONCLUSIONS: These unique findings demonstrate the scope to influence force-power-generating capabilities in well-trained skeleton athletes across different training phases. To enhance start performance, it seems important to place particular emphasis on increasing maximum muscle-contraction velocity.


Subject(s)
Athletic Performance/physiology , Physical Conditioning, Human/methods , Resistance Training/methods , Sports/physiology , Adaptation, Physiological , Adult , Competitive Behavior/physiology , Female , Humans , Leg/physiology , Male , Muscle Strength/physiology , Running/physiology , Young Adult
8.
Sports Biomech ; 17(2): 168-179, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28632062

ABSTRACT

The development of velocity across the skeleton start is critical to performance, yet poorly understood. We aimed to understand which components of the sled velocity profile determine performance and how physical abilities influence these components. Thirteen well-trained skeleton athletes (>85% of athletes in the country) performed dry-land push-starts alongside countermovement jump and sprint tests at multiple time-points. A magnet encoder attached to the sled wheel provided velocity profiles, which were characterised using novel performance descriptors. Stepwise regression revealed four variables (pre-load velocity, pre-load distance, load effectiveness, velocity drop) to explain 99% variance in performance (ß weights: 1.70, -0.81, 0.25, -0.07, respectively). Sprint times and jump ability were associated (r ± 90% CI) with pre-load velocity (-0.70 ± 0.27 and 0.88 ± 0.14, respectively) and distance (-0.48 ± 0.39 and 0.67 ± 0.29, respectively), however, unclear relationships between both physical measures and load effectiveness (0.33 ± 0.44 and -0.35 ± 0.48, respectively) were observed. Athletes should develop accelerative ability to attain higher velocity earlier on the track. Additionally, the loading phase should not be overlooked and may be more influenced by technique than physical factors. Future studies should utilise this novel approach when evaluating skeleton starts or interventions to enhance performance.


Subject(s)
Athletic Performance/physiology , Running/physiology , Snow Sports/physiology , Acceleration , Biomechanical Phenomena/physiology , Female , Humans , Male , Regression Analysis , Sports Equipment , Time and Motion Studies , Young Adult
9.
Int J Sports Physiol Perform ; 13(6): 755-762, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29140147

ABSTRACT

PURPOSE: To understand how training periodization influences sprint performance and key step characteristics over an extended training period in an elite sprint training group. METHODS: Four sprinters were studied during 5 mo of training. Step velocities, step lengths, and step frequencies were measured from video of the maximum velocity phase of training sprints. Bootstrapped mean values were calculated for each athlete for each session, and 139 within-athlete, between-sessions comparisons were made with a repeated-measures analysis of variance. RESULTS: As training progressed, a link in the changes in velocity and step frequency was maintained. There were 71 between-sessions comparisons with a change in step velocity yielding at least a large effect size (>1.2), of which 73% had a correspondingly large change in step frequency in the same direction. Within-athlete mean session step length remained relatively constant throughout. Reductions in step velocity and frequency occurred during training phases of high-volume lifting and running, with subsequent increases in step velocity and frequency happening during phases of low-volume lifting and high-intensity sprint work. CONCLUSIONS: The importance of step frequency over step length to the changes in performance within a training year was clearly evident for the sprinters studied. Understanding the magnitudes and timings of these changes in relation to the training program is important for coaches and athletes. The underpinning neuromuscular mechanisms require further investigation but are likely explained by an increase in force-producing capability followed by an increase in the ability to produce that force rapidly.


Subject(s)
Athletic Performance/physiology , Physical Conditioning, Human/methods , Running/physiology , Acceleration , Adolescent , Adult , Analysis of Variance , Biomechanical Phenomena , Gait/physiology , Humans , Longitudinal Studies , Male , Time Factors , Time and Motion Studies , Video Recording , Young Adult
10.
Int J Sports Physiol Perform ; 12(1): 81-89, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27140284

ABSTRACT

PURPOSE: An extensive battery of physical tests is typically employed to evaluate athletic status and/or development, often resulting in a multitude of output variables. The authors aimed to identify independent physical predictors of elite skeleton start performance to overcome the general problem of practitioners employing multiple tests with little knowledge of their predictive utility. METHODS: Multiple 2-d testing sessions were undertaken by 13 high-level skeleton athletes across a 24-wk training season and consisted of flexibility, dry-land push-track, sprint, countermovement-jump, and leg-press tests. To reduce the large number of output variables to independent factors, principal-component analysis (PCA) was conducted. The variable most strongly correlated to each component was entered into a stepwise multiple-regression analysis, and K-fold validation assessed model stability. RESULTS: PCA revealed 3 components underlying the physical variables: sprint ability, lower-limb power, and strength-power characteristics. Three variables that represented these components (unresisted 15-m sprint time, 0-kg jump height, and leg-press force at peak power, respectively) significantly contributed (P < .01) to the prediction (R2 = .86, 1.52% standard error of estimate) of start performance (15-m sled velocity). Finally, the K-fold validation revealed the model to be stable (predicted vs actual R2 = .77; 1.97% standard error of estimate). CONCLUSIONS: Only 3 physical-test scores were needed to obtain a valid and stable prediction of skeleton start ability. This method of isolating independent physical variables underlying performance could improve the validity and efficiency of athlete monitoring, potentially benefitting sport scientists, coaches, and athletes alike.


Subject(s)
Athletic Performance/physiology , Exercise Test/methods , Sports/physiology , Female , Humans , Lower Extremity/physiology , Male , Muscle Strength/physiology , Physical Conditioning, Human/methods , Plyometric Exercise , Principal Component Analysis , Regression Analysis , Resistance Training/methods , Young Adult
11.
Physiol Meas ; 37(4): 596-609, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27027548

ABSTRACT

Dual-energy x-ray absorptiometry (DXA) imaging is considered to provide a valid and reliable estimation of body composition when stringent scanning protocols are adopted. However, applied practitioners are not always able to achieve this level of control and the subsequent impact on measurement precision is not always taken into account when evaluating longitudinal body composition changes. The primary aim of this study was to establish the reliability of DXA in an applied elite sport setting to investigate whether real body composition changes can be detected. Additionally, the performance implications of these changes during the training year were investigated. Forty-eight well-trained athletes (from four diverse sports) underwent two DXA scans using a 'real-world' approach (with limited pre-scan controls), typically within 48 h, to quantify typical error of measurement (TEM). Twenty-five athletes underwent further scans, before and after specific training and competition blocks. 'True' body composition changes were evaluated using 2 × TEM thresholds. Twelve bob skeleton athletes also performed countermovement jump and leg press tests at each time point. Many 'true' body composition changes were detected and coincided with the primary training emphases (e.g. lean mass gains during hypertrophy-based training). Clear relationships (r ± 90% CI) were observed between performance changes (countermovement jump and leg press) and changes in lean mass (0.53 ± 0.26 and 0.35 ± 0.28, respectively) and fat mass (-0.44 ± 0.27 and -0.37 ± 0.28, respectively). DXA was able to detect real body composition changes without the use of stringent scanning controls. Associations between changes in body composition and performance demonstrated the potential influence of these changes on strength and power indices.


Subject(s)
Absorptiometry, Photon/methods , Athletes , Body Composition , Adult , Exercise , Female , Humans , Male , Time Factors , Young Adult
12.
Sports Biomech ; 14(1): 106-21, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25896099

ABSTRACT

This study investigated changes in performance and technique that occur during maximal effort bend sprinting compared with straight-line sprinting under typical outdoor track conditions. Utilising a repeated measures design, three-dimensional video analysis was conducted on seven male sprinters in both conditions (bend radius: 37.72 m). Mean race velocity decreased from 9.86  to 9.39 m/s for the left step (p = 0.008) and from 9.80  to 9.33 m/s for the right step (p = 0.004) on the bend compared with the straight, a 4.7% decrease for both steps. This was mainly due to a 0.11 Hz (p = 0.022) decrease in step frequency for the left step and a 0.10 m (p = 0.005) reduction in race step length for the right step. The left hip was 4.0° (p = 0.049) more adducted at touchdown on the bend than the straight. Furthermore, the bend elicited significant differences between left and right steps in a number of variables including ground contact time, touchdown distance and hip flexion/extension and abduction/adduction angles. The results indicate that the roles of the left and right steps may be functionally different during bend sprinting. This specificity should be considered when designing training programmes.


Subject(s)
Athletic Performance/physiology , Running/physiology , Track and Field/physiology , Adult , Biomechanical Phenomena , Humans , Locomotion/physiology , Male , Task Performance and Analysis , Young Adult
13.
Gait Posture ; 38(4): 653-7, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23540768

ABSTRACT

Inverse dynamics analyses are commonly used to understand movement patterns in all forms of gait. The aim of this study was to determine the effect of digital filtering procedures on the knee joint moments calculated during sprinting as an example of the possible influence of data analysis processes on interpretation of movement patterns. Data were obtained from three highly trained sprinters who completed a series of 30 m sprints. Ten different combinations of cut-off frequency were applied to the two-dimensional kinematic and kinetic input data with the kinetic cut-off frequency set equal to or higher than the kinematic cut-off frequency. When using the commonly adopted practice of filtering the kinetic data with a higher cut-off frequency than the kinematic data, exaggerated fluctuations in the knee joint moment existed soon after contact. In extreme cases, the knee moved between flexor, extensor and flexor dominance in less than 33 ms and through ranges exceeding 500 Nm. During an inverse dynamics analysis of locomotion, mismatched cut-off frequencies will likely affect the calculated joint moments if the cut-off frequency applied to the kinematic data is less than the true frequency content, particularly during impact phases. In the example of sprinting, exaggerated fluctuations in the knee joint moment appear to be data processing artefact rather than genuine characteristics of the joint kinetics. When the cut-off frequencies, and thus the frequency content of all input data, are matched, the fluctuations after contact are minimal and such a procedure is suggested for inverse dynamics analyses of gait.


Subject(s)
Gait/physiology , Knee Joint/physiology , Running/physiology , Statistics as Topic/methods , Adult , Biomechanical Phenomena , Female , Humans , Kinetics , Male , Models, Biological , Task Performance and Analysis , Young Adult
14.
Article in English | MEDLINE | ID: mdl-21937305

ABSTRACT

This paper develops and validates a finite-element model to predict both the cured shape and snap-through of asymmetric bistable laminates actuated by piezoelectric macro fiber composites attached to the laminate. To fully describe piezoelectric actuation, the three-dimensional compliance [s(ij)], piezoelectric [d(ij)], and relative permittivity [ε(ij)] matrices were formulated for the macro fiber actuator. The deflection of an actuated isotropic aluminum beam was then modeled and compared with experimental measurements to validate the data. The model was then extended to bistable laminates actuated using macro fiber composites. Model results were compared with experimental measurements of laminate profile (shape) and snap-through voltage. The modeling approach is an important intermediate step toward enabling design of shape-changing structures based on bistable laminates.

15.
Med Sci Sports Exerc ; 43(6): 1055-62, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20980924

ABSTRACT

PURPOSE: The aim of this study was to investigate the step characteristics among the very best 100-m sprinters in the world to understand whether the elite athletes are individually more reliant on step frequency (SF) or step length (SL). METHODS: A total of 52 male elite-level 100-m races were recorded from publicly available television broadcasts, with 11 analyzed athletes performing in 10 or more races. For each run of each athlete, the average SF and SL over the whole 100-m distance was analyzed. To determine any SF or SL reliance for an individual athlete, the 90% confidence interval (CI) for the difference between the SF-time versus SL-time relationships was derived using a criterion nonparametric bootstrapping technique. RESULTS: Athletes performed these races with various combinations of SF and SL reliance. Athlete A10 yielded the highest positive CI difference (SL reliance), with a value of 1.05 (CI = 0.50-1.53). The largest negative difference (SF reliance) occurred for athlete A11 as -0.60, with the CI range of -1.20 to 0.03. CONCLUSIONS: Previous studies have generally identified only one of these variables to be the main reason for faster running velocities. However, this study showed that there is a large variation of performance patterns among the elite athletes and, overall, SF or SL reliance is a highly individual occurrence. It is proposed that athletes should take this reliance into account in their training, with SF-reliant athletes needing to keep their neural system ready for fast leg turnover and SL-reliant athletes requiring more concentration on maintaining strength levels.


Subject(s)
Athletic Performance/physiology , Running/physiology , Humans , Male , Statistics, Nonparametric , Videotape Recording
16.
Sports Biomech ; 9(4): 258-69, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21309300

ABSTRACT

Sprint start performance has previously been quantified using several different measures. This study aimed to identify whether different measures could influence the performance-based ranking within a group of 12 sprinters, and if so, to identify the most appropriate measure. None of the 10 performance measures ranked all sprinters in the same order; Spearman's rho correlations between different block phase measures ranged from 0.50 to 0.94, and between block phase measures and those obtained beyond block exit from 0.66 to 0.85. Based on the consideration of what each measure quantifies, normalised average horizontal external power was identified as the most appropriate, incorporating both block velocity and the time spent producing this velocity. The accuracy with which these data could be obtained in an externally valid field setting was assessed against force platform criterion data. For an athlete producing 678 +/- 40 W of block power, a carefully set-up manual high-speed video analysis protocol produced systematic and random errors of +5 Wand +/- 24 W, respectively. Since the choice of performance measure could affect the conclusions drawn from a technique analysis, for example the success of an intervention, it is proposed that external power is used to quantify start performance.


Subject(s)
Acceleration , Athletic Performance/physiology , Posture/physiology , Running/physiology , Track and Field/physiology , Biomechanical Phenomena , Choice Behavior , Humans , Male , Reaction Time , Video Recording , Young Adult
17.
Med Sci Sports Exerc ; 40(4): 707-15, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18317373

ABSTRACT

INTRODUCTION: The forces produced by an athlete during the support phase of a sprint run are a vital determinant of the outcome of the performance. The purpose of this study was to improve the understanding of sprint technique in well-trained sprinters through the comprehensive analysis of joint kinetics during the support phase of a maximum-velocity sprint. METHODS: Four well-trained sprinters performed maximum-effort 60-m sprints. Two-dimensional high-speed video (200 Hz) and ground-reaction force (1000 Hz) data were collected at the 45-m mark. Horizontal velocity, step length, step frequency, and normalized moment, power, and work, via inverse dynamics, were calculated for two trials in each athlete. RESULTS: The hip extensors performed positive work in early stance (normalized value = 0.063 +/- 0.017), and the plantar flexors performed positive work in late stance (normalized value = 0.053 +/- 0.010). The knee extensors played a negligible role in positive work generation throughout stance. CONCLUSIONS: In contrast to previous findings, the knee moment did not contribute substantially to power generation during the latter part of the support phase. This may be explained in part by the specific technical requirements of the maximum-velocity phase of the sprint. However, major periods of power generation of the hip extensors in early stance and of the plantar flexors in late stance were observed. The action of the knee joint during the support phase may therefore have been more of a facilitator for the radial transfer of power from the hip through the ankle on to the track.


Subject(s)
Knee Joint/physiology , Leg/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Running/physiology , Adult , Hip Joint/physiology , Humans , Male
18.
Sports Biomech ; 5(2): 155-66, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16939150

ABSTRACT

The aim of this study was to understand changes in technique within an athlete's own performance during a sprint hurdles run. Four athletes performed a training session containing four trials each over 10 hurdles. Clearances at hurdles three and nine were videotaped from a side view and manually digitised. All athletes in this study yielded a lower running speed over the hurdle at the ninth hurdle in comparison to the third hurdle in each run. All athletes also showed further signs of potential tiredness in the clearances of the ninth hurdle. Interestingly, these changes in technique varied among the athletes. This poses challenges to coaches, as they need to evaluate individually what changes in training should be introduced to keep the quality of clearances as high as possible throughout training. To match more closely the velocities to those in competitions, consideration could be given in training to shorten gradually the distances between the hurdles more during the latter part of the run, although this should be individually checked, based on the athlete. This way, athletes could learn to clear the hurdle with a higher horizontal velocity, even when fatigue is potentially influencing the performance.


Subject(s)
Biomechanical Phenomena/methods , Running , Adult , Female , Humans , Muscle Contraction , Physical Education and Training , Physical Endurance , Time Factors , Track and Field , Weight Lifting
SELECTION OF CITATIONS
SEARCH DETAIL
...