Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
2.
Hum Genomics ; 17(1): 88, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37789421

ABSTRACT

BACKGROUND: Endometriosis is a common, chronic disease among fertile-aged women. Disease course may be highly invasive, requiring extensive surgery. The etiology of endometriosis remains elusive, though a high level of heritability is well established. Several low-penetrance predisposing loci have been identified, but high-risk susceptibility remains undetermined. Endometriosis is known to increase the risk of epithelial ovarian cancers, especially of endometrioid and clear cell types. Here, we have analyzed a Finnish family where four women have been diagnosed with surgically verified, severely symptomatic endometriosis and two of the patients also with high-grade serous carcinoma. RESULTS: Whole-exome sequencing revealed three rare candidate predisposing variants segregating with endometriosis. The variants were c.1238C>T, p.(Pro413Leu) in FGFR4, c.5065C>T, p.(Arg1689Trp) in NALCN, and c.2086G>A, p.(Val696Met) in NAV2. The only variant predicted deleterious by in silico tools was the one in FGFR4. Further screening of the variants in 92 Finnish endometriosis and in 19 endometriosis-ovarian cancer patients did not reveal additional carriers. Histopathology, positive p53 immunostaining, and genetic analysis supported the high-grade serous subtype of the two tumors in the family. CONCLUSIONS: Here, we provide FGFR4, NALCN, and NAV2 as novel high-risk candidate genes for familial endometriosis. Our results also support the association of endometriosis with high-grade serous carcinoma. Further studies are required to validate the findings and to reveal the exact pathogenesis mechanisms of endometriosis. Elucidating the genetic background of endometriosis defines the etiology of the disease and provides opportunities for expedited diagnostics and personalized treatments.


Subject(s)
Carcinoma , Endometriosis , Ovarian Neoplasms , Humans , Female , Aged , Endometriosis/genetics , Genetic Predisposition to Disease , Exome Sequencing , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology
3.
Cancers (Basel) ; 15(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37686522

ABSTRACT

Chromosomal translocations creating fusion genes are common cancer drivers. The oncogenic ETV6-NTRK3 (EN) gene fusion joins the sterile alpha domain of the ETV6 transcription factor with the tyrosine kinase domain of the neurotrophin-3 receptor NTRK3. Four EN variants with alternating break points have since been detected in a wide range of human cancers. To provide molecular level insight into EN oncogenesis, we employed a proximity labeling mass spectrometry approach to define the molecular context of the fusions. We identify in total 237 high-confidence interactors, which link EN fusions to several key signaling pathways, including ERBB, insulin and JAK/STAT. We then assessed the effects of EN variants on these pathways, and showed that the pan NTRK inhibitor Selitrectinib (LOXO-195) inhibits the oncogenic activity of EN2, the most common variant. This systems-level analysis defines the molecular framework in which EN oncofusions operate to promote cancer and provides some mechanisms for therapeutics.

4.
Cancers (Basel) ; 15(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37509339

ABSTRACT

Cancer-associated gene fusions, also known as oncofusions, have emerged as influential drivers of oncogenesis across a diverse range of cancer types. These genetic events occur via chromosomal translocations, deletions, and inversions, leading to the fusion of previously separate genes. Due to the drastic nature of these mutations, they often result in profound alterations of cellular behavior. The identification of oncofusions has revolutionized cancer research, with advancements in sequencing technologies facilitating the discovery of novel fusion events at an accelerated pace. Oncofusions exert their effects through the manipulation of critical cellular signaling pathways that regulate processes such as proliferation, differentiation, and survival. Extensive investigations have been conducted to understand the roles of oncofusions in solid tumors, leukemias, and lymphomas. Large-scale initiatives, including the Cancer Genome Atlas, have played a pivotal role in unraveling the landscape of oncofusions by characterizing a vast number of cancer samples across different tumor types. While validating the functional relevance of oncofusions remains a challenge, even non-driver mutations can hold significance in cancer treatment. Oncofusions have demonstrated potential value in the context of immunotherapy through the production of neoantigens. Their clinical importance has been observed in both treatment and diagnostic settings, with specific fusion events serving as therapeutic targets or diagnostic markers. However, despite the progress made, there is still considerable untapped potential within the field of oncofusions. Further research and validation efforts are necessary to understand their effects on a functional basis and to exploit the new targeted treatment avenues offered by oncofusions. Through further functional and clinical studies, oncofusions will enable the advancement of precision medicine and the drive towards more effective and specific treatments for cancer patients.

5.
Cell Death Discov ; 9(1): 222, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37400436

ABSTRACT

Wnt pathway dysregulation through genetic and non-genetic alterations occurs in multiple cancers, including ovarian cancer (OC). The aberrant expression of the non-canonical Wnt signaling receptor ROR1 is thought to contribute to OC progression and drug resistance. However, the key molecular events mediated by ROR1 that are involved in OC tumorigenesis are not fully understood. Here, we show that ROR1 expression is enhanced by neoadjuvant chemotherapy, and Wnt5a binding to ROR1 can induce oncogenic signaling via AKT/ERK/STAT3 activation in OC cells. Proteomics analysis of isogenic ROR1-knockdown OC cells identified STAT3 as a downstream effector of ROR1 signaling. Transcriptomics analysis of clinical samples (n = 125) revealed that ROR1 and STAT3 are expressed at higher levels in stromal cells than in epithelial cancer cells of OC tumors, and these findings were corroborated by multiplex immunohistochemistry (mIHC) analysis of an independent OC cohort (n = 11). Our results show that ROR1 and its downstream STAT3 are co-expressed in epithelial as well as stromal cells of OC tumors, including cancer-associated fibroblasts or CAFs. Our data provides the framework to expand the clinical utility of ROR1 as a therapeutic target to overcome OC progression.

6.
Methods Mol Biol ; 2690: 281-297, 2023.
Article in English | MEDLINE | ID: mdl-37450155

ABSTRACT

Proteomics methods such as affinity purification (AP) and proximity-dependent labeling (PL) coupled with mass spectrometry (MS) are currently commonly utilized to define interaction landscapes. BioID is one of the PL approaches, and it employs the expression of bait proteins fused to a nonspecific biotin ligase (BirA*), to induce in vivo biotinylation of proximal proteins. We developed the multiple approaches combined (MAC)-tag workflow, which allows for both AP and BioID analysis with a single construct and with almost identical protein purification and MS identification procedures. MAC-tag is a well-established method and has been widely used. Recent developed PL tags such as BioID2 and UltraID are smaller versions of BirA* with faster labeling efficiency. We therefore incorporate these tags into our system to develop MAC2-tag (containing BioID2) and MAC3-tag (containing UltraID) to overcome potential limitations of the original MAC-tag system and broaden the spectrum of applications for MAC-tags. Here, we describe a detailed procedure for the MAC-tag system workflow including cell line generation for the MAC/MAC2/MAC3-tagged protein of interest (POI), sample preparation for AP and PL protein purification, and MS analysis.


Subject(s)
Proteins , Proteomics , Chromatography, Affinity/methods , Biotinylation , Proteins/metabolism , Mass Spectrometry/methods , Proteomics/methods , Protein Interaction Mapping/methods
7.
EMBO Rep ; 24(7): e56467, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37155564

ABSTRACT

The APOE4 variant of apolipoprotein E (apoE) is the most prevalent genetic risk allele associated with late-onset Alzheimer's disease (AD). ApoE interacts with complement regulator factor H (FH), but the role of this interaction in AD pathogenesis is unknown. Here we elucidate the mechanism by which isoform-specific binding of apoE to FH alters Aß1-42-mediated neurotoxicity and clearance. Flow cytometry and transcriptomic analysis reveal that apoE and FH reduce binding of Aß1-42 to complement receptor 3 (CR3) and subsequent phagocytosis by microglia which alters expression of genes involved in AD. Moreover, FH forms complement-resistant oligomers with apoE/Aß1-42 complexes and the formation of these complexes is isoform specific with apoE2 and apoE3 showing higher affinity to FH than apoE4. These FH/apoE complexes reduce Aß1-42 oligomerization and toxicity, and colocalize with complement activator C1q deposited on Aß plaques in the brain. These findings provide an important mechanistic insight into AD pathogenesis and explain how the strongest genetic risk factor for AD predisposes for neuroinflammation in the early stages of the disease pathology.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Humans , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Complement Factor H/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Neuroinflammatory Diseases , Apolipoproteins E/chemistry , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Amyloid beta-Peptides/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism
8.
iScience ; 26(3): 106172, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36876139

ABSTRACT

The paired-like homeobox transcription factor LEUTX is expressed in human preimplantation embryos between the 4- and 8-cell stages, and then silenced in somatic tissues. To characterize the function of LEUTX, we performed a multiomic characterization of LEUTX using two proteomics methods and three genome-wide sequencing approaches. Our results show that LEUTX stably interacts with the EP300 and CBP histone acetyltransferases through its 9 amino acid transactivation domain (9aaTAD), as mutation of this domain abolishes the interactions. LEUTX targets genomic cis-regulatory sequences that overlap with repetitive elements, and through these elements it is suggested to regulate the expression of its downstream genes. We find LEUTX to be a transcriptional activator, upregulating several genes linked to preimplantation development as well as 8-cell-like markers, such as DPPA3 and ZNF280A. Our results support a role for LEUTX in preimplantation development as an enhancer binding protein and as a potent transcriptional activator.

9.
Front Cell Dev Biol ; 10: 1070599, 2022.
Article in English | MEDLINE | ID: mdl-36568985

ABSTRACT

The nuclear export factor CRM1-mediated pathway is known to be important for the nuclear egress of progeny parvovirus capsids in the host cells with virus-mediated cell cycle arrest at G2/M. However, it is still unclear whether this is the only pathway by which capsids exit the nucleus. Our studies show that the nuclear egress of DNA-containing full canine parvovirus. capsids was reduced but not fully inhibited when CRM1-mediated nuclear export was prevented by leptomycin B. This suggests that canine parvovirus capsids might use additional routes for nuclear escape. This hypothesis was further supported by our findings that nuclear envelope (NE) permeability was increased at the late stages of infection. Inhibitors of cell cycle regulatory protein cyclin-dependent kinase 1 (Cdk1) and pro-apoptotic caspase 3 prevented the NE leakage. The change in NE permeability could be explained by the regulation of the G2/M checkpoint which is accompanied by early mitotic and apoptotic events. The model of G2/M checkpoint activation was supported by infection-induced nuclear accumulation of cyclin B1 and Cdk1. Both NE permeability and nuclear egress of capsids were reduced by the inhibition of Cdk1. Additional proof of checkpoint function regulation and promotion of apoptotic events was the nucleocytoplasmic redistribution of nuclear transport factors, importins, and Ran, in late infection. Consistent with our findings, post-translational histone acetylation that promotes the regulation of several genes related to cell cycle transition and arrest was detected. In conclusion, the model we propose implies that parvoviral capsid egress partially depends on infection-induced G2/M checkpoint regulation involving early mitotic and apoptotic events.

10.
Nat Commun ; 13(1): 6953, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376313

ABSTRACT

The ErbB4 receptor isoforms JM-a and JM-b differ within their extracellular juxtamembrane (eJM) domains. Here, ErbB4 isoforms are used as a model to address the effect of structural variation in the eJM domain of receptor tyrosine kinases (RTK) on downstream signaling. A specific JM-a-like sequence motif is discovered, and its presence or absence (in JM-b-like RTKs) in the eJM domains of several RTKs is demonstrated to dictate selective STAT activation. STAT5a activation by RTKs including the JM-a like motif is shown to involve interaction with oligosaccharides of N-glycosylated cell surface proteins such as ß1 integrin, whereas STAT5b activation by JM-b is dependent on TYK2. ErbB4 JM-a- and JM-b-like RTKs are shown to associate with specific signaling complexes at different cell surface compartments using analyses of RTK interactomes and super-resolution imaging. These findings provide evidence for a conserved mechanism linking a ubiquitous extracellular motif in RTKs with selective intracellular STAT signaling.


Subject(s)
Receptor Protein-Tyrosine Kinases , Signal Transduction , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, ErbB-4/metabolism , Protein Isoforms/metabolism , Cell Membrane/metabolism , Phosphorylation
11.
Cell Death Dis ; 13(8): 714, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35977930

ABSTRACT

Most patients with ovarian cancer (OC) are diagnosed at a late stage when there are very few therapeutic options and a poor prognosis. This is due to the lack of clearly defined underlying mechanisms or an oncogenic addiction that can be targeted pharmacologically, unlike other types of cancer. Here, we identified protein tyrosine kinase 7 (PTK7) as a potential new therapeutic target in OC following a multiomics approach using genetic and pharmacological interventions. We performed proteomics analyses upon PTK7 knockdown in OC cells and identified novel downstream effectors such as synuclein-γ (SNCG), SALL2, and PP1γ, and these findings were corroborated in ex vivo primary samples using PTK7 monoclonal antibody cofetuzumab. Our phosphoproteomics analyses demonstrated that PTK7 modulates cell adhesion and Rho-GTPase signaling to sustain epithelial-mesenchymal transition (EMT) and cell plasticity, which was confirmed by high-content image analysis of 3D models. Furthermore, using high-throughput drug sensitivity testing (525 drugs) we show that targeting PTK7 exhibited synergistic activity with chemotherapeutic agent paclitaxel, CHK1/2 inhibitor prexasertib, and PLK1 inhibitor GSK461364, among others, in OC cells and ex vivo primary samples. Taken together, our study provides unique insight into the function of PTK7, which helps to define its role in mediating aberrant Wnt signaling in ovarian cancer.


Subject(s)
Ovarian Neoplasms , Receptor Protein-Tyrosine Kinases , Carcinoma, Ovarian Epithelial/genetics , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Cell Plasticity , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Wnt Signaling Pathway
12.
Cell Mol Life Sci ; 79(5): 276, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35504983

ABSTRACT

ROR1, ROR2, and PTK7 are Wnt ligand-binding members of the receptor tyrosine kinase family. Despite their lack of catalytic activity, these receptors regulate skeletal, cardiorespiratory, and neurological development during embryonic and fetal stages. However, their overexpression in adult tissue is strongly connected to tumor development and metastasis, suggesting a strong pharmacological potential for these molecules. Wnt5a ligand can activate these receptors, but lead to divergent signaling and functional outcomes through mechanisms that remain largely unknown. Here, we developed a cellular model by stably expressing ROR1, ROR2, and PTK7 in BaF3 cells that allowed us to readily investigate side-by-side their signaling capability and functional outcome. We applied proteomic profiling to BaF3 clones and identified distinctive roles for ROR1, ROR2, and PTK7 pseudokinases in modulating the expression of proteins involved in cytoskeleton dynamics, apoptotic, and metabolic signaling. Functionally, we show that ROR1 expression enhances cell survival and Wnt-mediated cell proliferation, while ROR2 and PTK7 expression is linked to cell migration. We also demonstrate that the distal C-terminal regions of ROR1 and ROR2 are required for receptors stability and downstream signaling. To probe the pharmacological modulation of ROR1 oncogenic signaling, we used affinity purification coupled to mass spectrometry (AP-MS) and proximity-dependent biotin identification (BioID) to map its interactome before and after binding of GZD824, a small molecule inhibitor previously shown to bind to the ROR1 pseudokinase domain. Our findings bring new insight into the molecular mechanisms of ROR1, ROR2, and PTK7, and highlight the therapeutic potential of targeting ROR1 with small molecule inhibitors binding to its vestigial ATP-binding site.


Subject(s)
Proteomics , Receptor Tyrosine Kinase-like Orphan Receptors , Cell Proliferation , Ligands , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Signal Transduction
13.
PLoS Pathog ; 18(4): e1010353, 2022 04.
Article in English | MEDLINE | ID: mdl-35395063

ABSTRACT

Autonomous parvoviruses encode at least two nonstructural proteins, NS1 and NS2. While NS1 is linked to important nuclear processes required for viral replication, much less is known about the role of NS2. Specifically, the function of canine parvovirus (CPV) NS2 has remained undefined. Here we have used proximity-dependent biotin identification (BioID) to screen for nuclear proteins that associate with CPV NS2. Many of these associations were seen both in noninfected and infected cells, however, the major type of interacting proteins shifted from nuclear envelope proteins to chromatin-associated proteins in infected cells. BioID interactions revealed a potential role for NS2 in DNA remodeling and damage response. Studies of mutant viral genomes with truncated forms of the NS2 protein suggested a change in host chromatin accessibility. Moreover, further studies with NS2 mutants indicated that NS2 performs functions that affect the quantity and distribution of proteins linked to DNA damage response. Notably, mutation in the splice donor site of the NS2 led to a preferred formation of small viral replication center foci instead of the large coalescent centers seen in wild-type infection. Collectively, our results provide insights into potential roles of CPV NS2 in controlling chromatin remodeling and DNA damage response during parvoviral replication.


Subject(s)
Parvoviridae Infections , Parvovirus , Cell Line , Chromatin , Humans , Parvovirus/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication
14.
EMBO Rep ; 23(6): e54041, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35384245

ABSTRACT

Much cell-to-cell communication is facilitated by cell surface receptor tyrosine kinases (RTKs). These proteins phosphorylate their downstream cytoplasmic substrates in response to stimuli such as growth factors. Despite their central roles, the functions of many RTKs are still poorly understood. To resolve the lack of systematic knowledge, we apply three complementary methods to map the molecular context and substrate profiles of RTKs. We use affinity purification coupled to mass spectrometry (AP-MS) to characterize stable binding partners and RTK-protein complexes, proximity-dependent biotin identification (BioID) to identify transient and proximal interactions, and an in vitro kinase assay to identify RTK substrates. To identify how kinase interactions depend on kinase activity, we also use kinase-deficient mutants. Our data represent a comprehensive, systemic mapping of RTK interactions and substrates. This resource adds information regarding well-studied RTKs, offers insights into the functions of less well-studied RTKs, and highlights RTK-RTK interactions and shared signaling pathways.


Subject(s)
Receptor Protein-Tyrosine Kinases , Signal Transduction , Cell Membrane/metabolism , Humans , Phosphorylation , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Tyrosine/metabolism
15.
Nat Commun ; 13(1): 766, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35140242

ABSTRACT

Transcription factors (TFs) interact with several other proteins in the process of transcriptional regulation. Here, we identify 6703 and 1536 protein-protein interactions for 109 different human TFs through proximity-dependent biotinylation (BioID) and affinity purification mass spectrometry (AP-MS), respectively. The BioID analysis identifies more high-confidence interactions, highlighting the transient and dynamic nature of many of the TF interactions. By performing clustering and correlation analyses, we identify subgroups of TFs associated with specific biological functions, such as RNA splicing or chromatin remodeling. We also observe 202 TF-TF interactions, of which 118 are interactions with nuclear factor 1 (NFI) family members, indicating uncharacterized cross-talk between NFI signaling and other TF signaling pathways. Moreover, TF interactions with basal transcription machinery are mainly observed through TFIID and SAGA complexes. This study provides a rich resource of human TF interactions and also act as a starting point for future studies aimed at understanding TF-mediated transcription.


Subject(s)
Protein Interaction Maps , Transcription Factors , Biotinylation , Chromatin , Chromatography, Affinity , Gene Expression Regulation , Gene Regulatory Networks , HEK293 Cells , Humans , Mass Spectrometry , NFI Transcription Factors/genetics , Proteomics
16.
Mol Syst Biol ; 17(11): e10396, 2021 11.
Article in English | MEDLINE | ID: mdl-34709727

ABSTRACT

Treatment options for COVID-19, caused by SARS-CoV-2, remain limited. Understanding viral pathogenesis at the molecular level is critical to develop effective therapy. Some recent studies have explored SARS-CoV-2-host interactomes and provided great resources for understanding viral replication. However, host proteins that functionally associate with SARS-CoV-2 are localized in the corresponding subnetwork within the comprehensive human interactome. Therefore, constructing a downstream network including all potential viral receptors, host cell proteases, and cofactors is necessary and should be used as an additional criterion for the validation of critical host machineries used for viral processing. This study applied both affinity purification mass spectrometry (AP-MS) and the complementary proximity-based labeling MS method (BioID-MS) on 29 viral ORFs and 18 host proteins with potential roles in viral replication to map the interactions relevant to viral processing. The analysis yields a list of 693 hub proteins sharing interactions with both viral baits and host baits and revealed their biological significance for SARS-CoV-2. Those hub proteins then served as a rational resource for drug repurposing via a virtual screening approach. The overall process resulted in the suggested repurposing of 59 compounds for 15 protein targets. Furthermore, antiviral effects of some candidate drugs were observed in vitro validation using image-based drug screen with infectious SARS-CoV-2. In addition, our results suggest that the antiviral activity of methotrexate could be associated with its inhibitory effect on specific protein-protein interactions.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Discovery , Host-Pathogen Interactions/drug effects , Proteome/drug effects , SARS-CoV-2/physiology , COVID-19/virology , Drug Repositioning , Humans , Mass Spectrometry , Methotrexate/pharmacology , Proteomics , Virus Replication/drug effects
17.
Sci Rep ; 10(1): 14169, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32843691

ABSTRACT

Oncogenic gene fusions are estimated to account for up-to 20% of cancer morbidity. Recently sequence-level studies have established oncofusions throughout all tissue types. However, the functional implications of the identified oncofusions have often not been investigated. In this study, identified oncofusions from a fusion detection approach (DEEPEST) were analyzed in detail. Of the 28,863 oncofusions, we found almost 30% are expected to produce functional proteins with features from both parent genes. Kinases and transcription factors were the main gene families of the protein producing fusions. Considering their role as initiators, actors, and termination points of cellular signaling pathways, we focused our in-depth analyses on them. Domain architecture of the fusions and their wild-type interactors suggests that abnormal molecular context of protein domains caused by fusion events may unlock the oncogenic potential of the wild type counterparts of the fusion proteins. To understand overall oncofusion effects, we performed differential expression analysis using TCGA cancer project samples. Results indicated oncofusion-specific alterations in gene expression levels, and lower expression levels of components of key cellular pathways, in particular signal transduction and transcription regulation. The sum of results suggests that kinase and transcription factor oncofusions deregulate cellular signaling, possibly via acquiring novel functions.


Subject(s)
Neoplasms/genetics , Oncogene Fusion , Oncogene Proteins, Fusion/genetics , Protein Kinases/genetics , Transcription Factors/genetics , Carcinogenesis/genetics , Chromosomes, Human/genetics , Chromosomes, Human/ultrastructure , Datasets as Topic , Gene Expression Regulation, Neoplastic/genetics , Genes, Neoplasm , Humans , Metabolic Networks and Pathways/genetics , Oncogene Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Open Reading Frames/genetics , Protein Domains/genetics , Protein Kinases/metabolism , Signal Transduction/genetics , Structure-Activity Relationship , Transcription Factors/metabolism , Translocation, Genetic
18.
Nat Protoc ; 15(10): 3182-3211, 2020 10.
Article in English | MEDLINE | ID: mdl-32778839

ABSTRACT

Affinity purification coupled with mass spectrometry (AP-MS) and proximity-dependent biotinylation identification (BioID) methods have made substantial contributions to interaction proteomics studies. Whereas AP-MS results in the identification of proteins that are in a stable complex, BioID labels and identifies proteins that are in close proximity to the bait, resulting in overlapping yet distinct protein identifications. Integration of AP-MS and BioID data has been shown to comprehensively characterize a protein's molecular context, but interactome analysis using both methods in parallel is still labor and resource intense with respect to cell line generation and protein purification. Therefore, we developed the Multiple Approaches Combined (MAC)-tag workflow, which allows for both AP-MS and BioID analysis with a single construct and with almost identical protein purification and mass spectrometry (MS) identification procedures. We have applied the MAC-tag workflow to a selection of subcellular markers to provide a global view of the cellular protein interactome landscape. This localization database is accessible via our online platform ( http://proteomics.fi ) to predict the cellular localization of a protein of interest (POI) depending on its identified interactors. In this protocol, we present the detailed three-stage procedure for the MAC-tag workflow: (1) cell line generation for the MAC-tagged POI; (2) parallel AP-MS and BioID protein purification followed by MS analysis; and (3) protein interaction data analysis, data filtration and visualization with our localization visualization platform. The entire procedure can be completed within 25 d.


Subject(s)
Mass Spectrometry/methods , Protein Interaction Mapping/methods , Tandem Affinity Purification/methods , Biotinylation , Cell Line , Chromatography, Affinity/methods , Humans , Protein Interaction Maps/physiology , Proteins/metabolism , Proteomics/methods , Workflow
19.
Hum Mol Genet ; 27(24): 4288-4302, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30239752

ABSTRACT

The development of tissue fibrosis is complex and at the present time, not fully understood. Fibrosis, neurodegeneration and cerebral angiomatosis (FINCA disease) have been described in patients with mutations in NHL repeat-containing protein 2 (NHLRC2). However, the molecular functions of NHLRC2 are uncharacterized. Herein, we identified putative interacting partners for NHLRC2 using proximity-labeling mass spectrometry. We also investigated the function of NHLRC2 using immortalized cells cultured from skin biopsies of FINCA patients and normal fibroblasts with NHLRC2 knock-down and NHLRC2 overexpressing gene modifications. Transmission electron microscopy analysis of immortalized cell cultures from three FINCA patients demonstrated multilamellar bodies and distinctly organized vimentin filaments. Additionally, two of three cultures derived from patient skin biopsies contained cells that exhibited features characteristic of myofibroblasts. Altogether, the data presented in this study show for the first time that NHLRC2 is involved in cellular organization through regulation of the cytoskeleton and vesicle transport. We conclude that compound heterozygous p.Asp148Tyr and p.Arg201GlyfsTer6 mutations in NHLRC2 lead to severe tissue fibrosis in humans by enhancing the differentiation of fibroblasts to myofibroblasts.


Subject(s)
Angiomatosis/pathology , Brain Diseases/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Myofibroblasts/pathology , Nerve Degeneration/genetics , Actins/genetics , Angiomatosis/genetics , Brain Diseases/genetics , Cell Differentiation/genetics , Cells, Cultured , Fibrosis , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mutation/genetics , Myofibroblasts/metabolism , Skin/metabolism , Skin/pathology
20.
EMBO Mol Med ; 10(9)2018 09.
Article in English | MEDLINE | ID: mdl-30108113

ABSTRACT

Microsatellite instability (MSI) leads to accumulation of an excessive number of mutations in the genome, mostly small insertions and deletions. MSI colorectal cancers (CRCs), however, also contain more point mutations than microsatellite-stable (MSS) tumors, yet they have not been as comprehensively studied. To identify candidate driver genes affected by point mutations in MSI CRC, we ranked genes based on mutation significance while correcting for replication timing and gene expression utilizing an algorithm, MutSigCV Somatic point mutation data from the exome kit-targeted area from 24 exome-sequenced sporadic MSI CRCs and respective normals, and 12 whole-genome-sequenced sporadic MSI CRCs and respective normals were utilized. The top 73 genes were validated in 93 additional MSI CRCs. The MutSigCV ranking identified several well-established MSI CRC driver genes and provided additional evidence for previously proposed CRC candidate genes as well as shortlisted genes that have to our knowledge not been linked to CRC before. Two genes, SMARCB1 and STK38L, were also functionally scrutinized, providing evidence of a tumorigenic role, for SMARCB1 mutations in particular.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Microsatellite Instability , Point Mutation , Gene Regulatory Networks , Humans , Molecular Sequence Annotation , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...