Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Int J Food Microbiol ; 193: 23-8, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25462919

ABSTRACT

Byssochlamys fulva and Neosartorya fischeri are heat-resistant fungi which are a concern to food industries (e.g. apple juice industry) since their growth represents significant economic liabilities. Although the most common method used to assess fungal growth in solid substrates is by measuring the colony's diameter, it is difficult to apply this method to food substrates. Alternatively, ergosterol contents have been used to quantify fungal contamination in some types of food. The current study aimed at modeling the growth of the heat-resistant fungi B. fulva and N. fischeri by measuring the colony diameter and ergosterol content, fitting the Baranyi and Roberts model to the results, and finally establishing a correlation between the parameters of the two analytical methods. Whereas the colony diameter was measured daily, the quantification of ergosterol was performed when the colonies reached diameters of 30, 60, 90, 120 and 150 mm. Results showed that B. fulva and N. fischeri were able to grow successfully on solidified apple juice at 10, 15, 20, 25 and 30 °C, and the Baranyi and Roberts model showed good ability to describe growth data. The correlation curves between the parameters of colony diameter and ergosterol content were obtained with satisfactory statistical indexes.


Subject(s)
Byssochlamys/chemistry , Byssochlamys/growth & development , Ergosterol/analysis , Food Microbiology , Models, Biological , Neosartorya/chemistry , Neosartorya/growth & development , Aspergillus/growth & development , Beverages/microbiology , Malus/microbiology , Temperature
2.
Braz. j. microbiol ; 45(1): 49-58, 2014. ilus, tab
Article in English | LILACS | ID: lil-709478

ABSTRACT

Bacteria and molds may spoil and/or contaminate apple juice either by direct microbial action or indirectly by the uptake of metabolites as off-flavours and toxins. Some of these microorganisms and/or metabolites may remain in the food even after extensive procedures. This study aim to identify the presence of molds (including heat resistant species) and Alicyclobacillus spp., during concentrated apple juice processing. Molds were isolated at different steps and then identified by their macroscopic and microscopic characteristics after cultivation on standard media at 5, 25 and 37ºC, during 7 days. Among the 19 isolated found, 63% were identified as Penicillium with 50% belonging to the P. expansum specie. With regards to heat resistant molds, the species Neosartorya fischeri, Byssochlamys fulva and also the genus Eupenicillium sp., Talaromyces sp. and Eurotium sp. were isolated. The thermoacidophilic spore-forming bacteria were identified as A. acidoterrestris by a further investigation based on 16S rRNA sequence similarity. The large contamination found indicates the need for methods to eliminate or prevent the presence of these microorganisms in the processing plants in order to avoid both spoilage of apple juice and toxin production.


Subject(s)
Alicyclobacillus/isolation & purification , Beverages/microbiology , Food Handling , Fungi/classification , Fungi/isolation & purification , Bacterial Load , Colony Count, Microbial , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Malus , Microscopy , /genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...