Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 91(2): 023906, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32113453

ABSTRACT

Implanted positive muons with low energies (in the range 1-30 keV) are extremely useful local probes in the study of thin films and multi-layer structures. The average muon stopping depth, typically in the order of tens of nanometers, is a function of the muon implantation energy and of the density of the material, but the stopping range extends over a broad region, which is also in the order of tens of nanometers. Therefore, an adequate simulation procedure is required in order to extract the depth dependence of the experimental parameters. Here, we present a method to extract depth-resolved information from the implantation energy dependence of the experimental parameters in a low-energy muon spin spectroscopy experiment. The method and corresponding results are exemplified for a semiconductor film, Cu(In,Ga)Se2, covered with a thin layer of Al2O3, but can be applied to any heterostructure studied with low-energy muons. It is shown that if an effect is present in the experimental data, this method is an important tool to identify its location and depth extent.

2.
Nanoscale ; 10(8): 3697-3708, 2018 Feb 22.
Article in English | MEDLINE | ID: mdl-29388656

ABSTRACT

In this work, the effects of Si doping in GaAs nanowires (NWs) grown on GaAs (111)B by molecular beam epitaxy with different Si doping levels (nominal free carrier concentrations of 1 × 1016, 8 × 1016, 1 × 1018 and 5 × 1018 cm-3) are deeply investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), grazing incidence X-ray diffraction (GID), photoluminescence (PL) and cathadoluminescence (CL). TEM results reveal a mixture of wurtzite (WZ) and zinc-blende (ZB) segments along the NW axis independently of the Si doping levels. GID measurements suggest a slight increase of the ZB fraction with the Si doping. Low temperature PL and CL spectra exhibit sharp lines in the energy range 1.41-1.48 eV, for the samples with lower Si doping levels. However, the emission intensity increases and is accompanied by a clear broadening of the observed lines for the samples with higher Si doping levels. The staggered type-II band alignment only determines the optical properties of the lower doping levels in GaAs:Si NWs. For the higher Si doping levels, the electronic energy level structure of the NWs is determined by electrostatic fluctuating potentials intimately related to the amphoteric behavior of the Si dopant in GaAs. For the heavily doped NWs, the estimated depth of the potential wells is ∼96-117 meV. Our results reveal that the occurrence of the fluctuating potentials is not dependent on the crystalline phase and shows that the limitation imposed by the polytypism can be overcome.

SELECTION OF CITATIONS
SEARCH DETAIL
...