Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(3)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35159860

ABSTRACT

Bandgap engineering of semiconductor materials represents a crucial step for their employment in optoelectronics and photonics. It offers the opportunity to tailor their electronic and optical properties, increasing the degree of freedom in designing new devices and widening the range of their possible applications. Here, we report the bandgap engineering of a layered InSe monolayer, a superior electronic and optical material, by substituting In atoms with Ga atoms. We developed a theoretical understanding of In1-xGaxSe stability and electronic properties in its whole compositional range (x=0-1) through first-principles density functional theory calculations, the cluster expansion method, and kinetic Monte Carlo simulations. Our findings highlight the possibility of modulating the InGaSe bandgap by ≈0.41 eV and reveal that this compound is an excellent candidate to be employed in many optoelectronic and photonic devices.

2.
J Phys Chem Lett ; 12(45): 10947-10952, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34735143

ABSTRACT

In the past few years remarkable interest has been kindled by the development of nonclassical light sources and, in particular, of single-photon emitters (SPE), which represent fundamental building blocks for optical quantum technology. In this Letter, we analyze the stability and electronic properties of an InSe monolayer with point defects with the aim of demonstrating its applicability as an SPE. The presence of deep defect states within the InSe band gap is verified when considering substitutional defects with atoms belonging to group IV, V, and VI. In particular, the optical properties of Ge as substitution impurity of Se predicted by solving the Bethe-Salpeter equation on top of the GW corrected electronic states show that transitions between the valence band maximum and the defect state are responsible for the absorption and spontaneous emission processes, so that the latter results in a strongly peaked spectrum in the near-infrared. These properties, together with a high localization of the involved electronic states, appear encouraging in the quest for novel SPE materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...