Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biomed Pharmacother ; 173: 116345, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442670

ABSTRACT

Antagonists of the A2B adenosine receptor have recently emerged as targeted anticancer agents and immune checkpoint inhibitors within the realm of cancer immunotherapy. This study presents a comprehensive evaluation of novel Biginelli-assembled pyrimidine chemotypes, including mono-, bi-, and tricyclic derivatives, as A2BAR antagonists. We conducted a comprehensive examination of the adenosinergic profile (both binding and functional) of a large compound library consisting of 168 compounds. This approach unveiled original lead compounds and enabled the identification of novel structure-activity relationship (SAR) trends, which were supported by extensive computational studies, including quantum mechanical calculations and free energy perturbation (FEP) analysis. In total, 25 molecules showed attractive affinity (Ki < 100 nM) and outstanding selectivity for A2BAR. From these, five molecules corresponding to the new benzothiazole scaffold were below the Ki < 10 nM threshold, in addition to a novel dual A2A/A2B antagonist. The most potent compounds, and the dual antagonist, showed enantiospecific recognition in the A2BAR. Two A2BAR selective antagonists and the dual A2AAR/A2BAR antagonist reported in this study were assessed for their impact on colorectal cancer cell lines. The results revealed a significant and dose-dependent reduction in cell proliferation. Notably, the A2BAR antagonists exhibited remarkable specificity, as they did not impede the proliferation of non-tumoral cell lines. These findings support the efficacy and potential that A2BAR antagonists as valuable candidates for cancer therapy, but also that they can effectively complement strategies involving A2AAR antagonism in the context of immune checkpoint inhibition.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Humans , Purinergic P1 Receptor Antagonists , Receptor, Adenosine A2B/metabolism , Adenosine A2 Receptor Antagonists/pharmacology , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy
2.
J Neurosci Res ; 102(2): e25296, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38361411

ABSTRACT

Fas-Associated protein with Death Domain (FADD), a key molecule controlling cell fate by balancing apoptotic versus non-apoptotic functions, is dysregulated in post-mortem brains of subjects with psychopathologies, in animal models capturing certain aspects of these disorders, and by several pharmacological agents. Since persistent disruptions in normal functioning of daily rhythms are linked with these conditions, oscillations over time of key biomarkers, such as FADD, could play a crucial role in balancing the clinical outcome. Therefore, we characterized the 24-h regulation of FADD (and linked molecular partners: p-ERK/t-ERK ratio, Cdk-5, p35/p25, cell proliferation) in key brain regions for FADD regulation (prefrontal cortex, striatum, hippocampus). Samples were collected during Zeitgeber time (ZT) 2, ZT5, ZT8, ZT11, ZT14, ZT17, ZT20, and ZT23 (ZT0, lights-on or inactive period; ZT12, lights-off or active period). FADD showed similar daily fluctuations in all regions analyzed, with higher values during lights off, and opposite to p-ERK/t-ERK ratios regulation. Both Cdk-5 and p35 remained stable and did not change across ZT. However, p25 increased during lights off, but exclusively in striatum. Finally, no 24-h modulation was observed for hippocampal cell proliferation, although higher values were present during lights off. These results demonstrated a clear daily modulation of FADD in several key brain regions, with a more prominent regulation during the active time of rats, and suggested a key role for FADD, and molecular partners, in the normal physiological functioning of the brain's daily rhythmicity, which if disrupted might participate in the development of certain pathologies.


Subject(s)
Brain , Prefrontal Cortex , Humans , Rats , Male , Animals , Brain/metabolism , Prefrontal Cortex/metabolism , Hippocampus/metabolism , Fas-Associated Death Domain Protein/metabolism
3.
J Affect Disord ; 276: 626-635, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32871695

ABSTRACT

BACKGROUND: Dysregulations of endocannabinoids and/or cannabinoid (CB) receptors have been implicated in the pathophysiology and treatment of major depressive disorder (MDD). METHODS: CB1 and CB2 receptors, neuroprotective mTOR (mechanistic target of rapamycin) and pro-apoptotic JNK1/2 (c-Jun-N-terminal kinases) were quantified by immunoblotting in postmortem prefrontal cortex of MDD and controls, and further compared in antidepressant (AD)-free and AD-treated subjects. Neuroplastic proteins (PSD-95, Arc, spinophilin) were quantified in MDD brains. RESULTS: Total cortical CB1 glycosylated (≈54/64 kDa) receptor was increased in MDD (+20%, n=23, p=0.02) when compared with controls (100%, n=19). This CB1 receptor upregulation was quantified in AD-treated (+23%, n=14, p=0.02) but not in AD-free (+14%, n=9, p=0.34) MDD subjects. In the same MDD cortical samples, CB2 glycosylated (≈45 kDa) receptor was unaltered (all MDD: +11%, n=23, p=0.10; AD-free: +12%, n=9, p=0.31; AD-treated: +10%, n=14, p=0.23). In MDD, mTOR activity (p-Ser2448 TOR/t-TOR) was increased (all MDD: +29%, n=18, p=0.002; AD-free: +33%, n=8, p=0.03; AD-treated: +25%, n=10, p=0.04). In contrast, JNK1/2 activity (p-Thr183/Tyr185/t-JNK) was unaltered in MDD subjects. Cortical PSD-95, Arc, and spinophilin contents were unchanged in MDD. LIMITATIONS: A relative limited sample size. Some MDD subjects had been treated with a variety of ADs. The results must be understood in the context of suicide victims with MDD. CONCLUSIONS: The upregulation of CB1 receptor density, but not that of CB2 receptor, as well as the increased mTOR activity in PFC/BA9 of subjects with MDD (AD-free/treated) support their contributions in the complex pathophysiology of MDD and in the molecular mechanisms of antidepressant drugs.


Subject(s)
Cannabinoids , Depressive Disorder, Major , Depressive Disorder, Major/drug therapy , Humans , Prefrontal Cortex , Receptors, Cannabinoid , TOR Serine-Threonine Kinases
4.
Article in English | MEDLINE | ID: mdl-30003929

ABSTRACT

Ketamine (KET) is an antidepressant and hypnotic drug acting as an antagonist at excitatory NMDA glutamate receptors. The working hypothesis postulated that KET-induced sleep in mice results in dysregulation of mitogen-activated protein kinases (MAPK) MEK-ERK sequential phosphorylation and upregulation of survival p-FADD and other neuroplastic markers in brain. Low (5-15 mg/kg) and high (150 mg/kg) doses of KET on target proteins were assessed by Western immunoblot in mouse brain cortex. During the time course of KET (150 mg/kg)-induced sleep (up to 50 min) p-MEK was increased (up to +79%) and p-ERK decreased (up to -46%) indicating disruption of MEK to ERK signal. Subhypnotic KET (5-15 mg/kg) also revealed uncoupling of p-MEK (+13-81%) to p-ERK (unchanged content). KET did not alter contraregulatory MAPK mechanisms such as inactivated p-MEK1 (ERK dampening) and phosphatases MKP1/2/3 (ERK dephosphorylation). As other relevant findings, KET (5, 15 and 150 mg/kg) upregulated p-FADD in a dose-dependent manner, and for the hypnotic dose the effect paralleled the time course of sleep which resulted in increased p-FADD/FADD ratios. KET (150 mg/kg) also increased NF-κΒ and PSD-95 neuroplastic markers. Flumazenil (a neutral allosteric antagonist at GABAA receptor) prolonged KET sleep and blocked p-MEK upregulation, indicating the involvement of this receptor as a negative modulator. SL-327 (a MEK inhibitor) augmented KET sleep, further indicating the relevance of reduced p-ERK1/2 in KET-induced hypnosis. These findings suggest that hypnotic and subhypnotic doses of KET inducing uncoupling of p-MEK to p-ERK signal and regulation of p-ERK (downregulation) and p-FADD (upregulation) may participate in the expression of some of its adverse effects (e.g. amnesia, dissociative effects).


Subject(s)
Cerebral Cortex/drug effects , Fas-Associated Death Domain Protein/metabolism , Immobility Response, Tonic/drug effects , Ketamine/pharmacology , MAP Kinase Signaling System/drug effects , Neuronal Plasticity/drug effects , Receptors, GABA-A/metabolism , Analgesics/pharmacokinetics , Animals , Cerebral Cortex/physiology , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Flumazenil/pharmacology , GABA Modulators/pharmacology , Male , Mice , Nerve Tissue Proteins/metabolism , Reflex, Righting/drug effects , Time Factors
5.
Neurochem Int ; 122: 59-72, 2019 01.
Article in English | MEDLINE | ID: mdl-30423425

ABSTRACT

Midazolam and ketamine-induced anesthesia were recently shown to induce a disruption of MEK/ERK sequential phosphorylation with parallel upregulation of p-FADD in the mouse brain. The present study was designed to assess whether other structurally diverse anesthetic agents (pentobarbital, ethanol, chloral hydrate, isoflurane) also impair brain p-MEK to p-ERK signal and increase p-FADD during the particular time course of 'sleep' in mice. Pentobarbital (50 mg/kg)-, ethanol (4000 mg/kg)-, chloral hydrate (400 mg/kg)-, and isoflurane (2% in O2)-induced anesthesia (range: 24-60 min) were associated with unaltered or increased p-MEK1/2 (up to +155%) and decreased p-ERK1/2 (up to -60%) contents, revealing disruption of MEK to ERK activation in mouse brain cortex. These anesthetic agents also upregulated cortical p-FADD (up to +110%), but not total FADD (moderately decreased), which resulted in increased neuroplastic/survival p-FADD/FADD ratios (up to +2.8 fold). The inhibition of pentobarbital metabolism with SKF525-A (a cytochrome P450 inhibitor) augmented barbiturate anesthesia (2.6 times) and induced a greater and sustained upregulation of p-MEK with p-ERK downregulation, as well as prolonged increases of p-FADD content and p-FADD/FADD ratio (effects lasting for more than 240 min). Pentobarbital also upregulated significantly the cortical contents of other markers of neuroplasticity such as the ERK inhibitor p-PEA-15 (up to +46%), the transcription factor NF-κB (up to +27%) and the synaptic density protein PSD-95 (up to +20%) during 'sleep'. The results reveal a paradoxical stimulation of p-MEK without the concomitant (canonical) activation of p-ERK (e.g. with pentobarbital and isoflurane), for which various molecular mechanisms are discussed. The downregulation of brain p-ERK may participate in the manifestations of adverse effects displayed by most hypnotic/anesthetic agents in clinical use (e.g. amnesia).


Subject(s)
Brain/drug effects , Fas-Associated Death Domain Protein/metabolism , MAP Kinase Kinase Kinases/drug effects , Pentobarbital/pharmacology , Anesthetics/pharmacology , Animals , Brain/metabolism , Hypnotics and Sedatives/pharmacology , Ketamine/pharmacology , Male , Mice , Neuronal Plasticity/drug effects , Transcriptional Activation/drug effects , Up-Regulation/drug effects
6.
Psychopharmacology (Berl) ; 234(6): 925-941, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28127623

ABSTRACT

RATIONALE: CB2 receptors express constitutive activity and inverse agonists regulate receptor basal activity, which might be involved in death mechanisms. This study assessed the effects of a selective CB2 agonist (JWH133) and different CB2 inverse agonists (AM630, JTE907, raloxifene) on death pathways in brain. OBJECTIVES: The acute (JWH13) and the acute/chronic effects (AM630, JTE907, raloxifene) of CB2 ligands regulating pro-apoptotic c-Jun NH2-terminal kinase (p-JNK/JNK ratio) and associated signaling of extrinsic (Fas receptor, Fas-Associated death domain protein, FADD) and intrinsic (Bax, cytochrome c) death pathways (nuclear poly (ADP-ribose) polymerase PARP) were investigated in mouse brain. METHODS: Mice were treated with CB2 drugs and target protein contents were assessed by western blot analysis. RESULTS: JWH133 reduced cortical JNK (-27-45%) whereas AM630 acutely increased JNK in cortex (+61-148%), cerebellum (+34-40%), and striatum (+33-42%). JTE907 and raloxifene also increased cortical JNK (+31%-57%). Acute AM630, but not JWH133, increased cortical FADD, Bax, cytochrome c, and PARP cleavage. Repeated treatments with the three CB2 inverse agonists were associated with a reversal of the acute effects resulting in decreases in cortical JNK (AM630: -36%; JTE907: -25%; raloxifene: -11%). Chronic treatments also induced a reversal with down-regulation (AM630) or only tolerance (JTE907 and raloxifene) on other apoptotic markers (FADD, Bax, cytochrome c, PARP). CONCLUSIONS: AM630 and JTE907 are CB2 protean ligands. Thus, chronic inverse agonists abolished CB2 constitutive activity and then the ligands behaved as agonists reducing (like JWH133) JNK activity. Acute and chronic treatments with CB2 inverse agonists regulate in opposite directions brain death markers.


Subject(s)
Apoptosis/drug effects , Brain/drug effects , Cannabinoid Receptor Agonists/pharmacology , MAP Kinase Kinase 4/drug effects , Receptor, Cannabinoid, CB2/drug effects , Animals , Brain/metabolism , Cannabinoids/pharmacology , Dioxoles/pharmacology , Down-Regulation/drug effects , Drug Inverse Agonism , Indoles/pharmacology , Ligands , MAP Kinase Kinase 4/metabolism , Male , Mice , Quinolones/pharmacology , Raloxifene Hydrochloride/pharmacology , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/metabolism , Signal Transduction/drug effects
7.
Article in English | MEDLINE | ID: mdl-28111292

ABSTRACT

Midazolam is a positive allosteric modulator at GABAA receptor that induces a short hypnosis and neuroplasticity, in which the sequential phosphorylation of MEK1/2 and ERK1/2 was shown to play a role. This study investigated the parallel activation of p-MEK and p-ERK and regulatory mechanisms induced by midazolam through the stimulation of GABAA receptors in the mouse brain. During the time course of midazolam (60mg/kg)-induced sleep in mice (lasting for about 2h) p-Ser217/221 MEK1/2 was increased (+146% to +258%) whereas, unexpectedly, p-Tyr204/Thr202 ERK1/2 was found decreased (-16% to -38%), revealing uncoupling of MEK to ERK signals in various brain regions. Midazolam-induced p-MEK1/2 upregulation was prevented by pretreatment (30min) with flumazenil (10mg/kg), indicating the involvement of GABAA receptors. Also unexpectedly, midazolam-induced p-ERK1/2 downregulation was not prevented by flumazenil (10 or 30mg/kg). Notably, during midazolam-induced sleep the content of inactivated p-Thr286 MEK1, which can dampen ERK1/2 activation, was increased (+33% to +149%) through a mechanism sensitive to flumazenil (10mg/kg). Midazolam also increased MKP-3 (+13% to +73%) content and this upregulation was prevented by flumazenil (10mg/kg); an effect suggesting ERK inactivation because MKP-3 is the phosphatase selective for ERK1/2 dephosphorylation. The results indicate that during midazolam-induced sleep in mice there is an uncoupling of p-MEK (increased) to p-ERK (decreased) signals. p-ERK1/2 downregulation (not involving GABAA receptors) is the result of increased inactivated MEK1 and phosphatase MKP-3 (both effects involving GABAA receptors). These findings are relevant for the neurobiology and clinical use of benzodiazepines.


Subject(s)
Brain/drug effects , Dual Specificity Phosphatase 6/metabolism , GABA Modulators/toxicity , Midazolam/toxicity , Mitogen-Activated Protein Kinase 1/metabolism , Signal Transduction/drug effects , Sleep/drug effects , Analysis of Variance , Animals , Brain/enzymology , Brain/ultrastructure , Dose-Response Relationship, Drug , Extracellular Signal-Regulated MAP Kinases/metabolism , Flumazenil/pharmacology , Male , Mice , Phosphorylation/drug effects , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism , Time Factors , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...