Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 119(43): e2109325118, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252027

ABSTRACT

Direct, accurate, and precise dating of archaeological pottery vessels is now achievable using a recently developed approach based on the radiocarbon dating of purified molecular components of food residues preserved in the walls of pottery vessels. The method targets fatty acids from animal fat residues, making it uniquely suited for directly dating the inception of new food commodities in prehistoric populations. Here, we report a large-scale application of the method by directly dating the introduction of dairying into Central Europe by the Linearbandkeramik (LBK) cultural group based on dairy fat residues. The radiocarbon dates (n = 27) from the 54th century BC from the western and eastern expansion of the LBK suggest dairy exploitation arrived with the first settlers in the respective regions and were not gradually adopted later. This is particularly significant, as contemporaneous LBK sites showed an uneven distribution of dairy exploitation. Significantly, our findings demonstrate the power of directly dating the introduction of new food commodities, hence removing taphonomic uncertainties when assessing this indirectly based on associated cultural materials or other remains.


Subject(s)
Dairying , Fatty Acids , Animals , Archaeology/methods , Dairying/history , Europe , Farmers , Fatty Acids/chemistry , Humans , Radiometric Dating , Time Factors
3.
Archaeol Anthropol Sci ; 14(9): 175, 2022.
Article in English | MEDLINE | ID: mdl-35996450

ABSTRACT

Direct and accurate radiocarbon dating of lipid residues preserved in ceramics is a recently established method that allows direct dating of specific food products and their inception in human subsistence strategies. The method targets individual fatty acids originating from animal fats such as ruminant dairy, ruminant adipose, non-ruminant adipose and aquatic fats. Horse lipid residues found in Central Asian pottery vessels are also directly dateable using this new method. Here we present the identification of equine lipid residues preserved in two pottery assemblages from the Neolithic and Eneolithic in Kazakhstan and their direct 14C dating. The site of Botai, previously radiocarbon-dated to the 4th millennium BC, was used as a reference to evaluate the dates obtained directly on horse lipids. The direct dating of equine products extracted from Botai potsherds are shown to be compatible with previous 14C dates at the site. The site of Bestamak, lacking previous14C measurements, had been relatively dated to the Neolithic based on pottery typologies. The direct dating of equine residues made it possible to anchor the pottery assemblage of Bestamak in the 6th millennium BC confirming their Neolithic attribution. These findings demonstrate the potential for dating horse products through a compound-specific approach, while highlighting challenges in 14C dating individual fatty acids from lipid extracts in which their abundances differ substantially. Supplementary Information: The online version contains supplementary material available at 10.1007/s12520-022-01630-2.

4.
Nature ; 608(7922): 336-345, 2022 08.
Article in English | MEDLINE | ID: mdl-35896751

ABSTRACT

In European and many African, Middle Eastern and southern Asian populations, lactase persistence (LP) is the most strongly selected monogenic trait to have evolved over the past 10,000 years1. Although the selection of LP and the consumption of prehistoric milk must be linked, considerable uncertainty remains concerning their spatiotemporal configuration and specific interactions2,3. Here we provide detailed distributions of milk exploitation across Europe over the past 9,000 years using around 7,000 pottery fat residues from more than 550 archaeological sites. European milk use was widespread from the Neolithic period onwards but varied spatially and temporally in intensity. Notably, LP selection varying with levels of prehistoric milk exploitation is no better at explaining LP allele frequency trajectories than uniform selection since the Neolithic period. In the UK Biobank4,5 cohort of 500,000 contemporary Europeans, LP genotype was only weakly associated with milk consumption and did not show consistent associations with improved fitness or health indicators. This suggests that other reasons for the beneficial effects of LP should be considered for its rapid frequency increase. We propose that lactase non-persistent individuals consumed milk when it became available but, under conditions of famine and/or increased pathogen exposure, this was disadvantageous, driving LP selection in prehistoric Europe. Comparison of model likelihoods indicates that population fluctuations, settlement density and wild animal exploitation-proxies for these drivers-provide better explanations of LP selection than the extent of milk exploitation. These findings offer new perspectives on prehistoric milk exploitation and LP evolution.


Subject(s)
Archaeology , Dairying , Disease , Genetics, Population , Lactase , Milk , Selection, Genetic , Animals , Animals, Wild , Biological Specimen Banks , Ceramics/history , Cohort Studies , Dairying/history , Europe/epidemiology , Europe/ethnology , Famine/statistics & numerical data , Gene Frequency , Genotype , History, Ancient , Humans , Lactase/genetics , Milk/metabolism , United Kingdom
5.
Sci Rep ; 11(1): 8185, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33854159

ABSTRACT

Present-day domestic cattle are reproductively active throughout the year, which is a major asset for dairy production. Large wild ungulates, in contrast, are seasonal breeders, as were the last historic representatives of the aurochs, the wild ancestors of cattle. Aseasonal reproduction in cattle is a consequence of domestication and herding, but exactly when this capacity developed in domestic cattle is still unknown and the extent to which early farming communities controlled the seasonality of reproduction is debated. Seasonal or aseasonal calving would have shaped the socio-economic practices of ancient farming societies differently, structuring the agropastoral calendar and determining milk availability where dairying is attested. In this study, we reconstruct the calving pattern through the analysis of stable oxygen isotope ratios of cattle tooth enamel from 18 sites across Europe, dating from the 6th mill. cal BC (Early Neolithic) in the Balkans to the 4th mill. cal BC (Middle Neolithic) in Western Europe. Seasonal calving prevailed in Europe between the 6th and 4th millennia cal BC. These results suggest that cattle agropastoral systems in Neolithic Europe were strongly constrained by environmental factors, in particular forage resources. The ensuing fluctuations in milk availability would account for cheese-making, transforming a seasonal milk supply into a storable product.


Subject(s)
Animal Husbandry/history , Milk/metabolism , Oxygen/analysis , Tooth/chemistry , Animals , Balkan Peninsula , Cattle , Dairying , Domestication , History, Medieval , Isotope Labeling , Oxygen/chemistry , Seasons
6.
Nature ; 580(7804): 506-510, 2020 04.
Article in English | MEDLINE | ID: mdl-32322061

ABSTRACT

Pottery is one of the most commonly recovered artefacts from archaeological sites. Despite more than a century of relative dating based on typology and seriation1, accurate dating of pottery using the radiocarbon dating method has proven extremely challenging owing to the limited survival of organic temper and unreliability of visible residues2-4. Here we report a method to directly date archaeological pottery based on accelerator mass spectrometry analysis of 14C in absorbed food residues using palmitic (C16:0) and stearic (C18:0) fatty acids purified by preparative gas chromatography5-8. We present accurate compound-specific radiocarbon determinations of lipids extracted from pottery vessels, which were rigorously evaluated by comparison with dendrochronological dates9,10 and inclusion in site and regional chronologies that contained previously determined radiocarbon dates on other materials11-15. Notably, the compound-specific dates from each of the C16:0 and C18:0 fatty acids in pottery vessels provide an internal quality control of the results6 and are entirely compatible with dates for other commonly dated materials. Accurate radiocarbon dating of pottery vessels can reveal: (1) the period of use of pottery; (2) the antiquity of organic residues, including when specific foodstuffs were exploited; (3) the chronology of sites in the absence of traditionally datable materials; and (4) direct verification of pottery typochronologies. Here we used the method to date the exploitation of dairy and carcass products in Neolithic vessels from Britain, Anatolia, central and western Europe, and Saharan Africa.


Subject(s)
Archaeology/methods , Ceramics/chemistry , Ceramics/history , Radiometric Dating/methods , Radiometric Dating/standards , Africa, Northern , Archaeology/standards , Bayes Theorem , Carbon Radioisotopes , Europe , Fatty Acids/chemistry , Fatty Acids/isolation & purification , Food/history , History, Ancient , Lipids/chemistry , Lipids/isolation & purification , Mass Spectrometry
7.
Proc Biol Sci ; 286(1894): 20182347, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30963881

ABSTRACT

The spread of early farming across Europe from its origins in Southwest Asia was a culturally transformative process which took place over millennia. Within regions, the pace of the transition was probably related to the particular climatic and environmental conditions encountered, as well as the nature of localized hunter-gatherer and farmer interactions. The establishment of farming in the interior of the Balkans represents the first movement of Southwest Asian livestock beyond their natural climatic range, and widespread evidence now exists for early pottery being used extensively for dairying. However, pottery lipid residues from sites in the Iron Gates region of the Danube in the northern Balkans show that here, Neolithic pottery was being used predominantly for processing aquatic resources. This stands out not only within the surrounding region but also contrasts markedly with Neolithic pottery use across wider Europe. These findings provide evidence for the strategic diversity within the wider cultural and economic practices during the Neolithic, with this exceptional environmental and cultural setting offering alternative opportunities despite the dominance of farming in the wider region.


Subject(s)
Agriculture/methods , Archaeology , Farmers , Romania , Serbia
9.
Proc Natl Acad Sci U S A ; 115(35): 8705-8709, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30104367

ABSTRACT

The 8.2-thousand years B.P. event is evident in multiple proxy records across the globe, showing generally dry and cold conditions for ca. 160 years. Environmental changes around the event are mainly detected using geochemical or palynological analyses of ice cores, lacustrine, marine, and other sediments often distant from human settlements. The Late Neolithic excavated area of the archaeological site of Çatalhöyük East [Team Poznan (TP) area] was occupied for four centuries in the ninth and eighth millennia B.P., thus encompassing the 8.2-thousand years B.P. climatic event. A Bayesian analysis of 56 radiocarbon dates yielded a high-resolution chronological model comprising six building phases, with dates ranging from before 8325-8205 to 7925-7815 calibrated years (cal) B.P. Here, we correlate an onsite paleoclimate record constructed from δ2H values of lipid biomarkers preserved in pottery vessels recovered from these buildings with changes in architectural, archaeozoological, and consumption records from well-documented archaeological contexts. The overall sequence shows major changes in husbandry and consumption practices at ca. 8.2 thousand years B.P., synchronous with variations in the δ2H values of the animal fat residues. Changes in paleoclimate and archaeological records seem connected with the patterns of atmospheric precipitation during the occupation of the TP area predicted by climate modeling. Our multiproxy approach uses records derived directly from documented archaeological contexts. Through this, we provide compelling evidence for the specific impacts of the 8.2-thousand years B.P. climatic event on the economic and domestic activities of pioneer Neolithic farmers, influencing decisions relating to settlement planning and food procurement strategies.

10.
Annu Rev Biochem ; 87: 1029-1060, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29709200

ABSTRACT

Over the past three decades, studies of ancient biomolecules-particularly ancient DNA, proteins, and lipids-have revolutionized our understanding of evolutionary history. Though initially fraught with many challenges, today the field stands on firm foundations. Researchers now successfully retrieve nucleotide and amino acid sequences, as well as lipid signatures, from progressively older samples, originating from geographic areas and depositional environments that, until recently, were regarded as hostile to long-term preservation of biomolecules. Sampling frequencies and the spatial and temporal scope of studies have also increased markedly, and with them the size and quality of the data sets generated. This progress has been made possible by continuous technical innovations in analytical methods, enhanced criteria for the selection of ancient samples, integrated experimental methods, and advanced computational approaches. Here, we discuss the history and current state of ancient biomolecule research, its applications to evolutionary inference, and future directions for this young and exciting field.


Subject(s)
DNA, Ancient , Evolution, Molecular , Animals , Biological Evolution , Extinction, Biological , Fossils , Genomics , Humans , Lipids/genetics , Paleontology , Phylogeny , Proteins/genetics , Proteomics
11.
Sci Rep ; 7(1): 7146, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28769118

ABSTRACT

Since their domestication in the Mediterranean zone of Southwest Asia in the eighth millennium BC, sheep, goats, pigs and cattle have been remarkably successful in colonizing a broad variety of environments. The initial steps in this process can be traced back to the dispersal of farming groups into the interior of the Balkans in the early sixth millennium BC, who were the first to introduce Mediterranean livestock beyond its natural climatic range. Here, we combine analysis of biomolecular and isotopic compositions of lipids preserved in prehistoric pottery with faunal analyses of taxonomic composition from the earliest farming sites in southeast Europe to reconstruct this pivotal event in the early history of animal husbandry. We observe a marked divergence between the (sub)Mediterranean and temperate regions of Southeast Europe, and in particular a significant increase of dairying in the biochemical record coupled with a shift to cattle and wild fauna at most sites north of the Balkan mountain range. The findings strongly suggest that dairying was crucial for the expansion of the earliest farming system beyond its native bioclimatic zone.


Subject(s)
Animal Husbandry , Domestication , Animal Husbandry/history , Animals , Archaeology/history , History, Ancient , Mediterranean Region
12.
Proc Natl Acad Sci U S A ; 113(48): 13594-13599, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27849595

ABSTRACT

In the absence of any direct evidence, the relative importance of meat and dairy productions to Neolithic prehistoric Mediterranean communities has been extensively debated. Here, we combine lipid residue analysis of ceramic vessels with osteo-archaeological age-at-death analysis from 82 northern Mediterranean and Near Eastern sites dating from the seventh to fifth millennia BC to address this question. The findings show variable intensities in dairy and nondairy activities in the Mediterranean region with the slaughter profiles of domesticated ruminants mirroring the results of the organic residue analyses. The finding of milk residues in very early Neolithic pottery (seventh millennium BC) from both the east and west of the region contrasts with much lower intensities in sites of northern Greece, where pig bones are present in higher frequencies compared with other locations. In this region, the slaughter profiles of all domesticated ruminants suggest meat production predominated. Overall, it appears that milk or the by-products of milk was an important foodstuff, which may have contributed significantly to the spread of these cultural groups by providing a nourishing and sustainable product for early farming communities.


Subject(s)
Animal Husbandry/history , Dairying/history , Lipids/analysis , Agriculture , Animals , Animals, Domestic , Archaeology , Cattle , Dairying/organization & administration , History, Ancient , Humans , Mediterranean Region , Milk/chemistry , Ruminants
13.
Nature ; 527(7577): 226-30, 2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26560301

ABSTRACT

The pressures on honeybee (Apis mellifera) populations, resulting from threats by modern pesticides, parasites, predators and diseases, have raised awareness of the economic importance and critical role this insect plays in agricultural societies across the globe. However, the association of humans with A. mellifera predates post-industrial-revolution agriculture, as evidenced by the widespread presence of ancient Egyptian bee iconography dating to the Old Kingdom (approximately 2400 BC). There are also indications of Stone Age people harvesting bee products; for example, honey hunting is interpreted from rock art in a prehistoric Holocene context and a beeswax find in a pre-agriculturalist site. However, when and where the regular association of A. mellifera with agriculturalists emerged is unknown. One of the major products of A. mellifera is beeswax, which is composed of a complex suite of lipids including n-alkanes, n-alkanoic acids and fatty acyl wax esters. The composition is highly constant as it is determined genetically through the insect's biochemistry. Thus, the chemical 'fingerprint' of beeswax provides a reliable basis for detecting this commodity in organic residues preserved at archaeological sites, which we now use to trace the exploitation by humans of A. mellifera temporally and spatially. Here we present secure identifications of beeswax in lipid residues preserved in pottery vessels of Neolithic Old World farmers. The geographical range of bee product exploitation is traced in Neolithic Europe, the Near East and North Africa, providing the palaeoecological range of honeybees during prehistory. Temporally, we demonstrate that bee products were exploited continuously, and probably extensively in some regions, at least from the seventh millennium cal BC, likely fulfilling a variety of technological and cultural functions. The close association of A. mellifera with Neolithic farming communities dates to the early onset of agriculture and may provide evidence for the beginnings of a domestication process.


Subject(s)
Beekeeping/history , Bees , Waxes/analysis , Waxes/history , Africa, Northern , Animals , Archaeology , Ceramics/chemistry , Ceramics/history , Europe , Farmers/history , Geographic Mapping , History, Ancient , Lipids/analysis , Lipids/chemistry , Middle East , Spatio-Temporal Analysis , Waxes/chemistry
14.
IUBMB Life ; 65(12): 983-90, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24339181

ABSTRACT

Lactase is the enzyme that breaks down the milk sugar lactose, and in most mammals, including most humans, lactase activity is down-regulated after the weaning period is completed. However, in about 35% of adults worldwide, lactase continues to be expressed throughout adulthood, a feature termed lactase persistence (LP). Genetic evidence indicates that LP is a recent human adaptation, and its current geographic distribution correlates with the relative historical importance of dairying in different human populations. Investigating archaeological evidence for fresh milk consumption has proved crucial in building an account of the joint evolution of LP and dairying. A powerful technique for investigating food processing, including milk processing, in ancient populations is lipid residue analysis on archaeological pottery. We review here the archaeological and genetic evidence available that have contributed to a better understanding of the gene-culture co-evolution of LP and dairying.


Subject(s)
Lactase/metabolism , Milk/metabolism , Animals , Drinking Behavior , Evolution, Molecular , Feeding Behavior , Gene Expression Regulation, Enzymologic , Humans , Lactase/genetics , Phenotype
15.
Nature ; 493(7433): 522-5, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23235824

ABSTRACT

The introduction of dairying was a critical step in early agriculture, with milk products being rapidly adopted as a major component of the diets of prehistoric farmers and pottery-using late hunter-gatherers. The processing of milk, particularly the production of cheese, would have been a critical development because it not only allowed the preservation of milk products in a non-perishable and transportable form, but also it made milk a more digestible commodity for early prehistoric farmers. The finding of abundant milk residues in pottery vessels from seventh millennium sites from north-western Anatolia provided the earliest evidence of milk processing, although the exact practice could not be explicitly defined. Notably, the discovery of potsherds pierced with small holes appear at early Neolithic sites in temperate Europe in the sixth millennium BC and have been interpreted typologically as 'cheese-strainers', although a direct association with milk processing has not yet been demonstrated. Organic residues preserved in pottery vessels have provided direct evidence for early milk use in the Neolithic period in the Near East and south-eastern Europe, north Africa, Denmark and the British Isles, based on the δ(13)C and Δ(13)C values of the major fatty acids in milk. Here we apply the same approach to investigate the function of sieves/strainer vessels, providing direct chemical evidence for their use in milk processing. The presence of abundant milk fat in these specialized vessels, comparable in form to modern cheese strainers, provides compelling evidence for the vessels having being used to separate fat-rich milk curds from the lactose-containing whey. This new evidence emphasizes the importance of pottery vessels in processing dairy products, particularly in the manufacture of reduced-lactose milk products among lactose-intolerant prehistoric farming communities.


Subject(s)
Ceramics/history , Cheese/history , Dairying/history , Lipids/analysis , Milk/chemistry , Africa, Northern , Aluminum Silicates , Animals , Archaeology , Cheese/analysis , Clay , Europe , Fatty Acids/analysis , Fatty Acids/chemistry , Gas Chromatography-Mass Spectrometry , History, Ancient , Humans , Lactose/analysis , Lactose/metabolism , Lactose Intolerance/history , Milk/history , Milk Proteins/chemistry , Triglycerides/analysis , Whey Proteins
16.
Nature ; 486(7403): 390-4, 2012 Jun 20.
Article in English | MEDLINE | ID: mdl-22722200

ABSTRACT

In the prehistoric green Sahara of Holocene North Africa-in contrast to the Neolithic of Europe and Eurasia-a reliance on cattle, sheep and goats emerged as a stable and widespread way of life, long before the first evidence for domesticated plants or settled village farming communities. The remarkable rock art found widely across the region depicts cattle herding among early Saharan pastoral groups, and includes rare scenes of milking; however, these images can rarely be reliably dated. Although the faunal evidence provides further confirmation of the importance of cattle and other domesticates, the scarcity of cattle bones makes it impossible to ascertain herd structures via kill-off patterns, thereby precluding interpretations of whether dairying was practiced. Because pottery production begins early in northern Africa the potential exists to investigate diet and subsistence practices using molecular and isotopic analyses of absorbed food residues. This approach has been successful in determining the chronology of dairying beginning in the 'Fertile Crescent' of the Near East and its spread across Europe. Here we report the first unequivocal chemical evidence, based on the δ(13)C and Δ(13)C values of the major alkanoic acids of milk fat, for the adoption of dairying practices by prehistoric Saharan African people in the fifth millennium bc. Interpretations are supported by a new database of modern ruminant animal fats collected from Africa. These findings confirm the importance of 'lifetime products', such as milk, in early Saharan pastoralism, and provide an evolutionary context for the emergence of lactase persistence in Africa.


Subject(s)
Dairying/history , Diet/history , Livestock/physiology , Milk/history , Animals , Archaeology , Art/history , Cattle , Caves , Chromatography, Gas , Dietary Fats/analysis , Food , Gas Chromatography-Mass Spectrometry , Goats/physiology , History, Ancient , Humans , Lactase/genetics , Libya , Milk/chemistry , Radiometric Dating , Sheep/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...