Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 136(7): 168, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37410182

ABSTRACT

KEY MESSAGE: Yield and quality tests of wheat lines derived from RWG35 show they carry little, or no linkage drag and are the preferred source of Sr47 for stem rust resistance. Three durum wheat (Triticum turgidum L. subsp. durum) lines, RWG35, RWG36, and RWG37 carrying slightly different Aegilops speltoides introgressions, but each carrying the Sr47 stem rust resistance gene, were backcrossed to three durum and three hard red spring (HRS) wheat (Triticum aestivum L.) cultivars to produce 18 backcross populations. Each population was backcrossed to the recurrent parent six times and prepared for yield trials to test for linkage drag. Lines carrying the introgression (S-lines) were compared to euploid sibling lines (W-lines) and their parent. Yield trials were conducted from 2018 to 2021 at three locations. Three agronomic and several quality traits were studied. In durum, lines derived from RWG35 had little or no linkage drag. Lines derived from RWG36 and RWG37 still retained linkage drag, most notably involving yield and thousand kernel weight, but also test weight, falling number, kernel hardness index, semolina extract, semolina protein content, semolina brightness, and peak height. In HRS wheat, the results were more complex, though the general result of RWG35 lines having little or no linkage drag and RWG36 and RWG37 lines retaining linkage drag still applied. But there was heterogeneity in the Glenn35S lines, and Linkert lines had problems combining with the Ae. speltoides introgressions. We concluded that introgressions derived from RWG35 either had eliminated linkage drag or any negative effects were minor in nature. We recommend that breeders who wish to incorporate Sr47 into their cultivars should work exclusively with germplasm derived from RWG35.


Subject(s)
Aegilops , Basidiomycota , Triticum/genetics , Aegilops/genetics , Chromosomes, Plant , Genes, Plant , Phenotype
2.
Theor Appl Genet ; 133(8): 2363-2375, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32436020

ABSTRACT

KEY MESSAGE: A total of 19 meta-QTL conferring resistance to tan spot were identified from 104 initial QTL detected in 15 previous QTL mapping studies. Tan spot, caused by the fungal pathogen Pyrenophora tritici-repentis (Ptr), is a major foliar disease worldwide in both bread wheat and durum wheat and can reduce grain yield due to reduction in photosynthetic area of leaves. Developing and growing resistant cultivars is a cost-effective and environmentally friendly approach to mitigate negative effects of the disease. Understanding the genetic basis of tan spot resistance can enhance the development of resistant cultivars. With that goal, over 100 QTL associated with resistance to tan spot induced by a variety of Ptr races and isolates have been identified from previous QTL mapping studies. Meta-QTL analysis can identify redundant QTL among various studies and reveal major QTL for targeting in marker-assisted selection applications. In this study, we performed a meta-QTL analysis of tan spot resistance using the reported QTL from 15 previous QTL mapping studies. An integrated linkage map with a total length of 4080.5 cM containing 47,309 markers was assembled from 21 individual linkage maps and three previously published consensus maps. Nineteen meta-QTL were clustered from 104 initial QTL projected on the integrated map. Three of the 19 meta-QTL located on chromosomes 2A, 3B, and 5A show large genetic effects and confer resistance to multiple races in multiple bread wheat and durum wheat mapping populations. The integration of those race-nonspecific QTL is a promising strategy to provide high and stable resistance to tan spot in wheat.


Subject(s)
Chromosome Mapping/methods , Disease Resistance/genetics , Host-Pathogen Interactions/genetics , Plant Diseases/genetics , Triticum/genetics , Ascomycota/isolation & purification , Genes, Plant , Genetic Linkage , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Triticum/metabolism , Triticum/microbiology
3.
Theor Appl Genet ; 133(2): 433-442, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31720702

ABSTRACT

KEY MESSAGE: A total of 12 QTL conferring resistance to tan spot induced by a race 2 isolate, 86-124, were identified in three tetraploid wheat mapping populations. Durum is a tetraploid species of wheat and an important food crop. Tan spot, caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr), is a major foliar disease of both tetraploid durum wheat and hexaploid bread wheat. Understanding the Ptr-wheat interaction and identifying major QTL can facilitate the development of resistant cultivars and effectively mitigate the negative effect of this disease. Over 100 QTL have already been discovered in hexaploid bread wheat, whereas few mapping studies have been conducted in durum wheat. Utilizing resistant resources and identifying novel resistant loci in tetraploid wheat will be beneficial for the development of tan spot-resistant durum varieties. In this study, we evaluated four interconnected tetraploid wheat populations for their reactions to the race 2 isolate 86-124, which produces Ptr ToxA. Tsn1, the wheat gene that confers sensitivity to Ptr ToxA, was not associated with tan spot severity in any of the four populations. We found a total of 12 tan spot-resistant QTL among the three mapping populations. The QTL located on chromosomes 3A and 5A were detected in multiple populations and co-localized with race-nonspecific QTL identified in other mapping studies. Together, these QTL can confer high levels of resistance and can be used for the improvement in tan spot resistance in both hexaploid bread and durum wheat breeding. Two QTL on chromosomes 1B and 7A, respectively, were found in one population when inoculated with a ToxA knockout strain 86-124ΔToxA only, indicating that their association with tan spot was induced by other unidentified necrotrophic effectors, but under the absence of Ptr ToxA. In addition to removal of the known dominant susceptibility genes, integrating major race-nonspecific resistance loci like the QTL identified on chromosome 3A and 5A in this study could confer high and stable tan spot resistance in durum wheat.


Subject(s)
Disease Resistance/genetics , Host-Pathogen Interactions/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Triticum/genetics , Ascomycota/genetics , Ascomycota/pathogenicity , Chromosome Mapping , Disease Resistance/physiology , Gene Knockout Techniques , Genes, Plant , Genetic Linkage , Genotype , Mycotoxins , Phenotype , Plant Breeding , Plant Diseases/microbiology , Plants, Genetically Modified , Tetraploidy , Triticum/metabolism
4.
Front Genet ; 10: 717, 2019.
Article in English | MEDLINE | ID: mdl-31475032

ABSTRACT

Durum wheat [Triticum durum (Desf).] is mostly used to produce pasta, couscous, and bulgur. The quality of the grain and end-use products determine its market value. However, quality tests are highly resource intensive and almost impossible to conduct in the early generations in the breeding program. Modern genomics-based tools provide an excellent opportunity to genetically dissect complex quality traits to expedite cultivar development using molecular breeding approaches. This study used a panel of 243 cultivars and advanced breeding lines developed during the last 20 years to identify SNPs associated with 24 traits related to nutritional value and quality. Genome-wide association study (GWAS) identified a total of 179 marker-trait associations (MTAs), located in 95 genomic regions belonging to all 14 durum wheat chromosomes. Major and stable QTLs were identified for gluten strength on chromosomes 1A and 1B, and for PPO activity on chromosomes 1A, 2B, 3A, and 3B. As a large amount of unbalance phenotypic data are generated every year on advanced lines in all the breeding programs, the applicability of such a dataset for identification of MTAs remains unclear. We observed that ∼84% of the MTAs identified using a historic unbalanced dataset (belonging to a total of 80 environments collected over a period of 16 years) were also identified in a balanced dataset. This suggests the suitability of historic unbalanced phenotypic data to identify beneficial MTAs to facilitate local-knowledge-based breeding. In addition to providing extensive knowledge about the genetics of quality traits, association mapping identified several candidate markers to assist durum wheat quality improvement through molecular breeding. The molecular markers associated with important traits could be extremely useful in the development of improved quality durum wheat cultivars using marker-assisted selection (MAS).

5.
Front Plant Sci ; 10: 1007, 2019.
Article in English | MEDLINE | ID: mdl-31447872

ABSTRACT

Fusarium head blight (FHB) is one of the most destructive diseases in wheat worldwide. Breeding for FHB resistance is hampered by its complex genetic architecture, large genotype by environment interaction, and high cost of phenotype screening. Genomic selection (GS) is a powerful tool to enhance improvement of complex traits such as FHB resistance. The objectives of this study were to (1) investigate the genetic architecture of FHB resistance in a North Dakota State University (NDSU) hard red spring wheat breeding population, (2) test if the major QTL Fhb1 and Fhb5 play an important role in this breeding population; and (3) assess the potential of GS to enhance breeding efficiency of FHB resistance. A total of 439 elite spring wheat breeding lines from six breeding cycles were genotyped using genotyping-by-sequencing (GBS) and 102,147 SNP markers were obtained. Evaluation of FHB severity was conducted in 10 unbalanced field trials across multiple years and locations. One QTL for FHB resistance was identified and located on chromosome arm 1AL, explaining 5.3% of total phenotypic variation. The major type II resistance QTL Fhb1 only explained 3.1% of total phenotypic variation and the QTL Fhb5 was not significantly associated with FHB resistance in this breeding population. Our results suggest that integration of many genes with medium/minor effects in this breeding population should provide stable FHB resistance. Genomic prediction accuracies of 0.22-0.44 were obtained when predicting over breeding cycles in this study, indicating the potential of GS to enhance the improvement of FHB resistance.

6.
J Bioinform Comput Biol ; 17(6): 1940012, 2019 12.
Article in English | MEDLINE | ID: mdl-32019414

ABSTRACT

Mapping short reads to a reference genome is an essential step in many next-generation sequencing (NGS) analyses. In plants with large genomes, a large fraction of the reads can align to multiple locations of the genome with equally good alignment scores. How to map these ambiguous reads to the genome is a challenging problem with big impacts on the downstream analysis. Traditionally, the default method is to assign an ambiguous read randomly to one of the many potential locations. In this study, we explore two alternative methods that are based on the hypothesis that the possibility of an ambiguous read being generated by a location is proportional to the total number of reads produced by that location: (1) the enrichment method that assigns an ambiguous read to the location that has produced the most reads among all the potential locations, (2) the probability method that assigns an ambiguous read to a location based on a probability proportional to the number of reads the location produces. We systematically compared the performance of the proposed methods with that of the default random method. Our results showed that the enrichment method produced better results than the default random method and the probability method in the discovery of single nucleotide polymorphisms (SNPs). Not only did it produce more SNP markers, but it also produced SNP markers with better quality, which was demonstrated using multiple mainstay genomic analyses, including genome-wide association studies (GWAS), minor allele distribution, population structure, and genomic prediction.


Subject(s)
Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide , Genetics, Population , Genome, Plant , Genome-Wide Association Study , Sequence Alignment , Triticum/genetics
7.
G3 (Bethesda) ; 8(3): 923-932, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29352079

ABSTRACT

Cadmium (Cd) is a heavy metal that has no known biological function and is toxic for many living organisms. The maximum level of Cd concentration allowed in the international market for wheat grain is 0.2 mg kg-1 Because phenotyping for Cd uptake is expensive and time consuming, molecular markers associated with genes conferring low Cd uptake would expedite selection and lead to the development of durum cultivars with reduced Cd concentrations. Here, we identified single nucleotide polymorphisms (SNPs) associated with a novel low Cd uptake locus in the durum experimental line D041735, which has hexaploid common wheat in its pedigree. Genetic analysis revealed a single major QTL for Cd uptake on chromosome arm 5BL within a 0.3 cM interval flanked by SNP markers. Analysis of the intervening sequence revealed a gene with homology to an aluminum-induced protein as a candidate gene. Validation and allelism tests revealed that the low Cd uptake gene identified in this study is different from the closely linked Cdu1-B gene, which also resides on 5BL. This study therefore showed that the durum experimental line D041735 contains a novel low Cd uptake gene that was likely acquired from hexaploid wheat.


Subject(s)
Cadmium/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Triticum/genetics , Triticum/metabolism , Alleles , Chromosome Mapping , Genes, Plant , Genetic Association Studies , Genetic Linkage , Genotype , High-Throughput Nucleotide Sequencing , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Quantitative Trait, Heritable , Reproducibility of Results
8.
Plant Genome ; 10(3)2017 11.
Article in English | MEDLINE | ID: mdl-29293807

ABSTRACT

Grain yield and semolina quality traits are essential selection criteria in durum wheat breeding. However, high phenotypic screening costs limit selection to relatively few breeding lines in late generations. This selection paradigm confers relatively low selection efficiency due to the advancement of undesirable lines into expensive yield trials for grain yield and quality trait testing. Marker-aided selection can enhance selection efficiency, especially for traits that are difficult or costly to phenotype. The aim of this study was to identify major quality trait quantitative trait loci (QTL) for marker-assisted selection (MAS) and to explore potential application of genomic selection (GS) in a durum wheat breeding program. In this study, genome-wide association mapping was conducted for five quality traits using 1184 lines from the North Dakota State University (NDSU) durum wheat breeding program. Several QTL associated with test weight, semolina color, and gluten strength were identified. Genomic selection models were developed and forward prediction accuracies of 0.27 to 0.66 were obtained for the five quality traits. Our results show the potential for grain and semolina quality traits to be selected more efficiently through MAS and GS with further refinement. Considerable opportunity exists to extend these techniques to other traits such as grain yield and agronomic characteristics, further improving breeding efficiency in durum cultivar development.


Subject(s)
Edible Grain , Genome, Plant , Genome-Wide Association Study , Plant Breeding , Triticum/genetics , Triticum/physiology , Color , Genotype , Glutens/chemistry , Haplotypes , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Triticum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...