Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(11): e32094, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882316

ABSTRACT

Acrylonitrile butadiene styrene (ABS) composites were prepared in filament form compatible with the material extrusion (MEX) 3D printing method, using biochar as a filler at various loadings of up to 10.0 wt %. Samples were fabricated to experimentally investigate their mechanical performance. The ABS/biochar composites were characterized using thermogravimetric analysis, differential scanning calorimetry, Raman spectroscopy, and rheological tests. The electrical properties of the composites were investigated using broadband dielectric spectroscopy. Scanning electron microscopy was utilized to analyze the morphological features of the fabricated specimens by examining their side and fracture surfaces. The results indicate that the composite with 4.0 wt % biochar content compared to pure ABS showed the highest mechanical response between the prepared composites (24.9 % and 21 % higher than the pure ABS tensile and flexural strength respectively). The composites retained their insulating behavior. These findings contribute to expanding the utilization of the material extrusion (MEX) 3D printing method while also unlocking prospects for potential applications in microelectronics, apart from mechanical reinforcement.

2.
Materials (Basel) ; 13(16)2020 Aug 09.
Article in English | MEDLINE | ID: mdl-32784871

ABSTRACT

The unique physicochemical, electrical, mechanical, and thermal properties of micas make them suitable for a wide range of industrial applications, and thus, the interest for these kind of hydrous aluminosilicate minerals is still persistent, not only from a practical but also from a scientific point of view. In the present work, complex impedance spectroscopy measurements were carried out in muscovite and biotite micas, perpendicular to their cleavage planes, over a broad range of frequencies (10-2 Hz to 106 Hz) and temperatures (473-1173 K) that have not been measured so far. Different formalisms of data representation were used, namely, Cole-Cole plots of complex impedance, complex electrical conductivity and electric modulus to analyze the electrical behavior of micas and the electrical signatures of the dehydration/dehydroxylation processes. Our results suggest that ac-conductivity is affected by the structural hydroxyls and the different concentrations of transition metals (Fe, Ti and Mg) in biotite and muscovite micas. The estimated activation energies, i.e., 0.33-0.83 eV for biotite and 0.69-1.92 eV for muscovite, were attributed to proton and small polaron conduction, due to the bound water and different oxidation states of Fe.

3.
Materials (Basel) ; 13(2)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952310

ABSTRACT

In this paper, we present the recent progress in the experimental studies of the electrical conductivity of dominant nominally anhydrous minerals in the upper mantle and mantle transition zone of Earth, namely, olivine, pyroxene, garnet, wadsleyite and ringwoodite. The main influence factors, such as temperature, pressure, water content, oxygen fugacity, and anisotropy are discussed in detail. The dominant conduction mechanisms of Fe-bearing silicate minerals involve the iron-related small polaron with a relatively large activation enthalpy and the hydrogen-related defect with lower activation enthalpy. Specifically, we mainly focus on the variation of oxygen fugacity on the electrical conductivity of anhydrous and hydrous mantle minerals, which exhibit clearly different charge transport processes. In representative temperature and pressure environments, the hydrogen of nominally anhydrous minerals can tremendously enhance the electrical conductivity of the upper mantle and transition zone, and the influence of trace structural water (or hydrogen) is substantial. In combination with the geophysical data of magnetotelluric surveys, the laboratory-based electrical conductivity measurements can provide significant constraints to the water distribution in Earth's interior.

SELECTION OF CITATIONS
SEARCH DETAIL
...