Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1878): 20220105, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37066657

ABSTRACT

Despite continued interest in mixed-species groups, we still lack a unified understanding of how ecological and social processes work across scales to influence group formation. Recent work has revealed ecological correlates of mixed-species group formation, but the mechanisms by which concomitant social dynamics produce these patterns, if at all, is unknown. Here, we use camera trap data for six mammalian grazer species in Serengeti National Park. Building on previous work, we found that ecological variables, and especially forage quality, influenced the chances of species overlap over small spatio-temporal scales (i.e. on the scales of several metres and hours). Migratory species (gazelle, wildebeest and zebra) were more likely to have heterospecific partners available in sites with higher forage quality, but the opposite was true for resident species (buffalo, hartebeest and topi). These findings illuminate the circumstances under which mixed-species group formation is even possible. Next, we found that greater heterospecific availability was associated with an increased probability of mixed-species group formation in gazelle, hartebeest, wildebeest and zebra, but ecological variables did not further shape these patterns. Overall, our results are consistent with a model whereby ecological and social drivers of group formation are species-specific and operate on different spatio-temporal scales. This article is part of the theme issue 'Mixed-species groups and aggregations: shaping ecological and behavioural patterns and processes'.


Subject(s)
Antelopes , Equidae , Animals , Herbivory , Social Environment , Buffaloes , Africa
2.
Heredity (Edinb) ; 118(4): 340-347, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27848947

ABSTRACT

Individuals are not merely subject to their social environments; they choose and create them, through a process called social environment (or social niche) construction. When genotypes differ in social environment-constructing behaviors, different genotypes are expected to experience different social environments. As social experience often affects behavioral development, quantitative genetics and psychology theories predict that genetic variation in social environment construction should have an important role in determining phenotypic variation; however, this hypothesis has not been tested directly. I identify multiple mechanisms of social environment construction that differ among natural genotypes of Drosophila melanogaster and investigate their consequences for the development of aggressive behavior. Male genotypes differed in the group sizes that they preferred and in their aggressive behavior; both of these behaviors influenced social experience, demonstrating that these behaviors function as social environment-constructing traits. Further, the effects of social experience-as determined in part by social environment construction-carried over to affect focal male aggression at a later time and with a new opponent. These results provide manipulative experimental support for longstanding hypotheses in psychology, that genetic variation in social environment construction has a causal role in behavioral development. More broadly, these results imply that studies of the genetic basis of complex traits should be expanded to include mechanisms by which genetic variation shapes the environments that individuals experience.


Subject(s)
Aggression , Behavior, Animal , Drosophila melanogaster/genetics , Social Environment , Animals , Drosophila melanogaster/physiology , Female , Genotype , Male
3.
J Fish Biol ; 78(2): 395-435, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21284626

ABSTRACT

This review examines the contribution of research on fishes to the growing field of behavioural syndromes. Current knowledge of behavioural syndromes in fishes is reviewed with respect to five main axes of animal personality: (1) shyness-boldness, (2) exploration-avoidance, (3) activity, (4) aggressiveness and (5) sociability. Compared with other taxa, research on fishes has played a leading role in describing the shy-bold personality axis and has made innovative contributions to the study of the sociability dimension by incorporating social network theory. Fishes are virtually the only major taxon in which behavioural correlations have been compared between populations. This research has guided the field in examining how variation in selection regime may shape personality. Recent research on fishes has also made important strides in understanding genetic and neuroendocrine bases for behavioural syndromes using approaches involving artificial selection, genetic mapping, candidate gene and functional genomics. This work has illustrated consistent individual variation in highly complex neuroendocrine and gene expression pathways. In contrast, relatively little work on fishes has examined the ontogenetic stability of behavioural syndromes or their fitness consequences. Finally, adopting a behavioural syndrome framework in fisheries management issues including artificial propagation, habitat restoration and invasive species, may promote restoration success. Few studies, however, have examined the ecological relevance of behavioural syndromes in the field. Knowledge of how behavioural syndromes play out in the wild will be crucial to incorporating such a framework into management practices.


Subject(s)
Behavior, Animal , Fisheries , Fishes/physiology , Animals , Ecology , Fishes/genetics , Gene Expression Regulation , Neurosecretory Systems/physiology , Personality
SELECTION OF CITATIONS
SEARCH DETAIL
...