Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bull Math Biol ; 73(1): 230-47, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20411345

ABSTRACT

Aggregation of the small peptide amyloid beta (Aß) into oligomers and fibrils in the brain is believed to be a precursor to Alzheimer's disease. Aß is produced via multiple proteolytic cleavages of amyloid precursor protein (APP), mediated by the enzymes ß- and γ-secretase. In this study, we examine the temporal dynamics of soluble (unaggregated) Aß in the plasma and cerebral-spinal fluid (CSF) of rhesus monkeys treated with different oral doses of a γ-secretase inhibitor. A dose-dependent reduction of Aß concentration was observed within hours of drug ingestion, for all doses tested. Aß concentration in the CSF returned to its predrug level over the monitoring period. In contrast, Aß concentration in the plasma exhibited an unexpected overshoot to as high as 200% of the predrug concentration, and this overshoot persisted as late as 72 hours post-drug ingestion. To account for these observations, we proposed and analyzed a minimal physiological model for Aß dynamics that could fit the data. Our analysis suggests that the overshoot arises from the attenuation of an Aß clearance mechanism, possibly due to the inhibitor. Our model predicts that the efficacy of Aß clearance recovers to its basal (pretreatment) value with a characteristic time of >48 hours, matching the time-scale of the overshoot. These results point to the need for a more detailed investigation of soluble Aß clearance mechanisms and their interaction with Aß-reducing drugs.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Models, Biological , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Animals , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Humans , Macaca mulatta , Mathematical Concepts , Models, Animal , Solubility
2.
Atherosclerosis ; 204(1): 55-65, 2009 May.
Article in English | MEDLINE | ID: mdl-19135672

ABSTRACT

Improved methods for non-invasive in vivo assessment are needed to guide development of animal models of atherosclerosis and to evaluate target engagement and in vivo efficacy of new drugs. Using novel 3D-micro-ultrasound technology, we developed and validated a novel protocol for 3D acquisition and analysis of imaging to follow lesion progression in atherosclerotic mice. The carotid arteries of ApoE receptor knockout mice and normal control mice were imaged within the proximal 2mm from the aortic branch point. Plaque volume along that length was quantified using a semi-automated 3D segmentation algorithm. Volumes derived by this method were compared to those calculated using 3-D histology post-mortem. Bland-Altman comparison revealed close correlation between these two measures of plaque volume. Furthermore, using a segmentation technique that captures early positive and 33 week negative remodeling, we found evidence that plaque volume increases linearly over time. Each animal and each plaque served as its own control, allowing accurate comparison. The high fidelity anatomical registration of this protocol provides increased spatial resolution and therefore greater sensitivity for measurement of plaque wall size, an advance over 2-dimensional measures of intimal-medial-thickening. Further, 3-dimensional analysis ensures a point of registration that captures functional markers in addition to the standard structural markers that characterize experimental atherosclerosis. In conclusion, this novel imaging protocol provides a non-invasive, accurate surrogate marker for experimental atherosclerosis over the life of the entire lesion.


Subject(s)
Carotid Artery Diseases/diagnostic imaging , Carotid Artery, Common/diagnostic imaging , Image Interpretation, Computer-Assisted , Imaging, Three-Dimensional , Microscopy, Acoustic , Algorithms , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Automation , Disease Models, Animal , Disease Progression , Mice , Mice, Inbred C57BL , Mice, Knockout , Predictive Value of Tests , Reproducibility of Results , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...