Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 14: 1347402, 2024.
Article in English | MEDLINE | ID: mdl-38571491

ABSTRACT

Hematopoiesis is a tightly regulated process that produces all adult blood cells and immune cells from multipotent hematopoietic stem cells (HSCs). HSCs usually remain quiescent, and in the presence of external stimuli like infection or inflammation, they undergo division and differentiation as a compensatory mechanism. Normal hematopoiesis is impacted by systemic inflammation, which causes HSCs to transition from quiescence to emergency myelopoiesis. At the molecular level, inflammatory cytokine signaling molecules such as tumor necrosis factor (TNF), interferons, interleukins, and toll-like receptors can all cause HSCs to multiply directly. These cytokines actively encourage HSC activation, proliferation, and differentiation during inflammation, which results in the generation and activation of immune cells required to combat acute injury. The bone marrow niche provides numerous soluble and stromal cell signals, which are essential for maintaining normal homeostasis and output of the bone marrow cells. Inflammatory signals also impact this bone marrow microenvironment called the HSC niche to regulate the inflammatory-induced hematopoiesis. Continuous pro-inflammatory cytokine and chemokine activation can have detrimental effects on the hematopoietic system, which can lead to cancer development, HSC depletion, and bone marrow failure. Reactive oxygen species (ROS), which damage DNA and ultimately lead to the transformation of HSCs into cancerous cells, are produced due to chronic inflammation. The biological elements of the HSC niche produce pro-inflammatory cytokines that cause clonal growth and the development of leukemic stem cells (LSCs) in hematological malignancies. The processes underlying how inflammation affects hematological malignancies are still not fully understood. In this review, we emphasize the effects of inflammation on normal hematopoiesis, the part it plays in the development and progression of hematological malignancies, and potential therapeutic applications for targeting these pathways for therapy in hematological malignancies.

2.
Clin Genet ; 103(4): 478-483, 2023 04.
Article in English | MEDLINE | ID: mdl-36635612

ABSTRACT

Mosaic variegated aneuploidy syndrome 2 (MVA2) (MIM# 614114) is a rare autosomal recessive condition caused by biallelic loss of function variants in the CEP57 gene. MVA2 is characterized by a variable phenotype ranging from poor growth to facial dysmorphism, short stature and congenital heart defects. Only 11 families and 5 pathogenic variants of MVA2 have been described so far. Intragenic duplication of 11 nucleotides (c.915_925dup11) in homozygous or compound heterozygous state is the commonest genetic aberration (10/13). We describe the first Indian family with two siblings with a novel homozygous splice site variant (c.382+2T>C) in CEP57. Molecular characterization demonstrated skipping of exon 3 due to the variant with protein modeling predicting subsequent complete loss of function. This is the first report of a splice site variation in CEP57 leading to MVA2.


Subject(s)
Chromosome Disorders , Siblings , Humans , Chromosome Disorders/genetics , Syndrome , Mosaicism , Mutation , Aneuploidy , Microtubule-Associated Proteins/genetics , Nuclear Proteins/genetics
3.
PLoS Pathog ; 17(9): e1009958, 2021 09.
Article in English | MEDLINE | ID: mdl-34559854

ABSTRACT

Cross-reactive epitopes (CREs) are similar epitopes on viruses that are recognized or neutralized by same antibodies. The S protein of SARS-CoV-2, similar to type I fusion proteins of viruses such as HIV-1 envelope (Env) and influenza hemagglutinin, is heavily glycosylated. Viral Env glycans, though host derived, are distinctly processed and thereby recognized or accommodated during antibody responses. In recent years, highly potent and/or broadly neutralizing human monoclonal antibodies (bnAbs) that are generated in chronic HIV-1 infections have been defined. These bnAbs exhibit atypical features such as extensive somatic hypermutations, long complementary determining region (CDR) lengths, tyrosine sulfation and presence of insertions/deletions, enabling them to effectively neutralize diverse HIV-1 viruses despite extensive variations within the core epitopes they recognize. As some of the HIV-1 bnAbs have evolved to recognize the dense viral glycans and cross-reactive epitopes (CREs), we assessed if these bnAbs cross-react with SARS-CoV-2. Several HIV-1 bnAbs showed cross-reactivity with SARS-CoV-2 while one HIV-1 CD4 binding site bnAb, N6, neutralized SARS-CoV-2. Furthermore, neutralizing plasma antibodies of chronically HIV-1 infected children showed cross neutralizing activity against SARS-CoV-2 pseudoviruses. Collectively, our observations suggest that human monoclonal antibodies tolerating extensive epitope variability can be leveraged to neutralize pathogens with related antigenic profile.


Subject(s)
Broadly Neutralizing Antibodies/immunology , HIV Antibodies/immunology , HIV-1/immunology , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , COVID-19/immunology , Cross Reactions/immunology , Humans , Plasma/immunology
4.
Eur J Med Genet ; 64(8): 104261, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34119699

ABSTRACT

Van Esch-O'Driscoll syndrome (VEODS) is a rare cause of syndromic X-linked intellectual disability characterised by short stature, microcephaly, variable degree of intellectual disability, and hypogonadotropic hypogonadism. To date, heterozygous hypomorphic variants in the gene encoding the DNA Polymerase α subunit, POLA1, have been observed in nine patients from five unrelated families with VEODS. We report a three-year-old child with VEODS having borderline intellectual disability due to a novel splice site variant causing exon 6 skipping and reduced POLA1 expression.


Subject(s)
DNA Polymerase I/genetics , Hypogonadism/genetics , Intellectual Disability/genetics , Phenotype , Pyloric Stenosis, Hypertrophic/genetics , Humans , Hypogonadism/pathology , Infant , Intellectual Disability/pathology , Male , Pyloric Stenosis, Hypertrophic/pathology , RNA Splicing , Syndrome
5.
J Gastrointest Cancer ; 52(3): 882-891, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32816148

ABSTRACT

BACKGROUND: Colon cancer cells can migrate and metastasize by undergoing epithelial-to-mesenchymal transition (EMT). Mesenchymal stem cells (MSCs) are non-cancerous, multipotent adult stem cells, which can also migrate. In this study, we wanted to compare the biological, physical, and functional properties of these migratory cells. MATERIALS AND METHODS: HT-29 and HCT-116, two human colon carcinoma cell lines, represent less aggressive and more aggressive cancer cells, respectively. MSCs were isolated from human bone marrow. After confirming the identity of all the cell types, they were evaluated for E-cadherin, ß1-integrin, Vimentin, ZEB-1, ß-catenin, and 18S rRNA using Q-PCR. MMP-2 and MMP-9 activity were evaluated using gelatin zymography. Functional tests like wound healing assay, migration assay, and invasion assay were also done. Biomechanical properties like cell stiffness and non-specific adhesion (between indenter probe and cell membrane) were evaluated through nanoindentation using atomic force microscopy (AFM). RESULTS: Expression of EMT and stem cell markers showed typical expression patterns for HT-29, HCT-116, and MSCs. Functional tests showed that MSCs migrated faster than malignant cells. MMP-2 and MMP-9 activity reinforced this behavior. Interestingly, the migration/invasion capacity of MSCs was comparable to aggressive HCT-116, and more than HT-29. MSCs also showed the maximum cell stiffness and non-specific cell-probe adhesions, followed by HCT116 and HT29 cells. CONCLUSIONS: Our findings indicate that the migratory properties of MSCs is comparable or even greater than that of cancer cells and despite their high migration potential, they also have the maximum stiffness.


Subject(s)
Colonic Neoplasms/physiopathology , Epithelial-Mesenchymal Transition/physiology , Mesenchymal Stem Cells/metabolism , Adaptor Proteins, Signal Transducing/analysis , Cadherins/analysis , Cell Line, Tumor , Cell Movement , Colonic Neoplasms/pathology , Humans , In Vitro Techniques , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...