Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Chem ; 71: 82-88, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28987295

ABSTRACT

Chlorhexidine (CHD), a germicidal drug, has degradation products that can be hemotoxic and carcinogenic. However, there is no consensus in literature about the degradation pathway. In order to shed light on that mechanism, we have employed Density Functional Theory to study reactants, in different protonation states, products and intermediates involved in the different pathways. Based on free energy values comparison and frontier molecular orbital analysis, we have obtained the most stable structures in each protonation state. CHD in saturated form has HOMO localized in one p-chloroaniline, and, due to molecule's symmetry, HOMO-1 has contributions from the other side of the molecule, but mainly from the biguanide portion of the molecule, instead of from the p-chloroaniline. For the saturated form, we have studied two possible degradation pathways, starting from the monoprotonated structure, and three pathways starting from the neutral structure. We found out that the mechanisms proposed in literature, whose pathways lead to p-chloroaniline (PCA) formation in a smaller number of steps, are more likely than the mechanisms with more intermediate steps or pathways that do not predict PCA formation. Also, based on free energy results, we have found that the formation of another sub-product (PBG-AU) is favorable as well.

2.
Phys Rev E ; 93(2): 022609, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26986379

ABSTRACT

In this work we have developed and implement a new approach for the study of magnetoliposomes using Monte Carlo simulations. Our model is based on interaction among nanoparticles considering magnetic dipolar, van der Waals, ionic-steric, and Zeeman interaction potentials. The ionic interaction between nanoparticles and the lipid bilayer is represented by an ionic repulsion electrical surface potential that depends on the nanoparticle-lipid bilayer distance and the concentration of ions in the solution. A direct comparison among transmission electron microscopy, vibrating sample magnetometer, dynamic light scattering, nanoparticle tracking analysis, and experimentally derived static magnetic birefringence and simulation data allow us to validate our implementation. Our simulations suggest that confinement plays an important role in aggregate formation.


Subject(s)
Liposomes/chemistry , Magnets/chemistry , Models, Molecular , Monte Carlo Method , Nanoparticles/chemistry , Lipid Bilayers/chemistry , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...