Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Open Res Eur ; 4: 46, 2024.
Article in English | MEDLINE | ID: mdl-38966236

ABSTRACT

Background: This study performs an exploratory analysis of current-future sustainability challenges for ocean planning for the regional seas of Catalonia located in the Western Mediterranean (Spain). Methods: To address the challenges we develop an Maritime Spatial Planning (MSP)-oriented geodatabase of maritime activities and deploy three spatial models: 1) an analysis of regional contribution to the 30% protection commitment with Biodiversity Strategy 2030; 2) a spatial Maritime Use Conflict (MUC) analysis to address current and future maritime activities interactions and 3) the StressorGenerator QGIS application to locate current and anticipate future sea areas of highest anthropogenic stress. Results & Conclusions: Results show that the i) study area is one of the most protected sea areas in the Mediterranean (44-51% of sea space protected); ii) anthropogenic stressors are highest in 1-4 nautical miles coastal areas, where maritime activities agglomerate, in the Gulf of Roses and Gulf of Saint Jordi. iii) According to the available datasets commercial fishery is causing highest conflict score inside protected areas. Potential new aquaculture sites are causing highest conflict in Internal Waters and the high potential areas for energy cause comparably low to negligible spatial conflicts with other uses. We discuss the added value of performing regional MSP exercises and define five challenges for regional ocean sustainability, namely: Marine protection beyond percentage, offshore wind energy: a new space demand, crowded coastal areas, multi-level governance of the regional sea and MSP knowledge gaps.

2.
Ann N Y Acad Sci ; 1436(1): 70-97, 2019 01.
Article in English | MEDLINE | ID: mdl-30008177

ABSTRACT

Long-term sustainable development of European offshore wind energy requires knowledge of the best places for installing offshore wind farms. To achieve this, a good knowledge of wind resources is needed, as well as knowledge of international, European, and national regulations regarding conflict management, marine environment conservation, biodiversity protection, licensing processes, and support regimes. Such a multidisciplinary approach could help to identify areas where wind resources are abundant and where conflicts with other interests are scarce, support measures are greater, and licensing processes are streamlined. An overview of offshore wind power studies at present, and of their future projections for the 21st century, allows for determining the optimal European locations to install or maintain offshore wind farms. Only northern Europe, the northwest portion of the Iberian Peninsula, the Gulf of Lyon, the Strait of Gibraltar, and the northwest coast of Turkey show no change or increase in wind power, revealing these locations as the most suitable for installing and maintaining offshore wind farms in the future. The installation of wind farms is subject to restrictions established under international law, European law, and the domestic legal framework of each EU member state. Europe is moving toward streamlining of licensing procedures, reducing subsidies, and implementing auction systems.


Subject(s)
Biodiversity , Climate , Models, Biological , Wind , Europe
3.
J Biomed Mater Res A ; 84(2): 364-76, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17618521

ABSTRACT

A new bioactive scaffold was prepared from a binary polysaccharide mixture composed of a polyanion (alginate) and a polycation (a lactose-modified chitosan, chitlac). Its potential use for articular chondrocytes encapsulation and cartilage reconstructive surgery applications has been studied. The hydrogel combines the ability of alginate to act as a 3D supporting structure with the capability of the second component (chitlac) to provide interactions with porcine articular chondrocytes. Physico-chemical characterization of the scaffold was accomplished by gel kinetics and compression measurements and demonstrated that alginate-chitlac mixture (AC-mixture) hydrogels exhibit better mechanical properties when compared with sole alginate hydrogels. Furthermore, biochemical and biological studies showed that these 3D scaffolds are able to maintain chondrocyte phenotype and particularly to significantly stimulate and promote chondrocyte growth and proliferation. In conclusion, the present study can be considered as a first step towards an engineered, biologically active scaffold for chondrocyte in vitro cultivation, expansion, and cell delivery.


Subject(s)
Alginates/chemistry , Biocompatible Materials/chemistry , Chitosan/chemistry , Chondrocytes/drug effects , Hydrogels/chemistry , Lactose/chemistry , Animals , Biomarkers/metabolism , Calcium/chemistry , Cartilage, Articular/cytology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Collagen/biosynthesis , Collagen/genetics , Glycosaminoglycans/biosynthesis , Glycosaminoglycans/genetics , Kinetics , Laminaria/chemistry , Magnetic Resonance Spectroscopy , Microscopy, Confocal , RNA/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction , Rheology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...