Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(2): e57192, 2013.
Article in English | MEDLINE | ID: mdl-23460830

ABSTRACT

The genus Thaumetopoea contains the processionary moths, a group of lepidopteran associated with forest trees, well known for the social behaviour of the larvae and for carrying urticating setae. The taxonomy of the genus is partly unresolved and a phylogenetic approach is lacking. The goal of this work is to produce a phylogeny for Thaumetopoea and to identify the main traits driving the evolution of this group. Eighteen mitochondrial and three nuclear genes were fully/partly sequenced. Markers were aligned and analysed singularly or in various combinations. Phylogenetic analyses were performed according to maximum likelihood and Bayesian inference methods. Trees obtained from largest data sets provided identical topologies that received strong statistical support. Three main clades were identified within Thaumetopoea and were further supported by several signatures located in the mitochondrial tRNAs and intergenic spacers. The reference topology was used to investigate the evolution of life history traits related to biogeography, host plant, ecology, and morphology. A multigenic approach allowed to produce a robust phylogenetic analysis of the genus Thaumetopoea, with the identification of three major clades linked to different ecological and life history traits. The first clade is associated with Angiosperm host plants and has a fast spring development of larvae on young foliage. The other clades have originated by one event of host plant shift to Gymnosperm Pinaceae, which implied a longer larval developmental time due to the lower nutritional quality of leaves. These clades showed different adaptations to such a constraint, the first with a switch of larval feeding to cold season (winter pine processionary moths), and the second with a retraction to high altitude and latitude and a development cycle extended over two years (summer pine processionary moths). Recent global warming is affecting all species and seems able to further shape the evolution of the group.


Subject(s)
Biological Evolution , Host Specificity/genetics , Moths/genetics , Moths/physiology , Social Behavior , Animals , Base Sequence , DNA, Intergenic/genetics , DNA, Mitochondrial/genetics , Genes, Insect/genetics , Mitochondria , Molecular Sequence Data , Nucleic Acid Conformation , Phylogeny , RNA, Transfer/chemistry , RNA, Transfer/genetics
2.
BMC Evol Biol ; 9: 220, 2009 Sep 04.
Article in English | MEDLINE | ID: mdl-19732434

ABSTRACT

BACKGROUND: Quaternary climatic oscillations had dramatic effects on species evolution. In northern latitudes, populations had to survive the coldest periods in refugial areas and recurrently colonized northern regions during interglacials. Such a history usually results in a loss of genetic diversity. Populations that did not experience glaciations, in contrast, probably maintained most of their ancestral genetic diversity. These characteristics dramatically affected the present-day distribution of genetic diversity and may influence the ability of species to cope with the current global changes. We conducted a range-wide study of mitochondrial genetic diversity in the pine processionary moth (Thaumetopoea pityocampa/T. wilkinsoni complex, Notodontidae), a forest pest occurring around the Mediterranean Basin and in southern Europe. This species is responding to the current climate change by rapid natural range expansion and can also be accidentally transported by humans. Our aim was to assess if Quaternary climatic oscillations had a different effect across the species' range and to determine if genetic footprints of contemporary processes can be identified in areas of recent introduction. RESULTS: We identified three main clades that were spatially structured. In most of Europe, the genetic diversity pattern was typical for species that experienced marked glaciation cycles. Except in refugia, European populations were characterized by the occurrence of one main haplotype and by a strong reduction in genetic diversity, which is expected in regions that were rapidly re-colonized when climatic conditions improved. In contrast, all other sub-clades around the Mediterranean Basin occurred in limited parts of the range and were strongly structured in space, as is expected in regions in which the impact of glaciations was limited. In such places, genetic diversity was retained in most populations, and almost all haplotypes were endemic. This pattern was extreme on remote Mediterranean islands (Crete, Cyprus, Corsica) where highly differentiated, endemic haplotypes were found. Recent introductions were typified by the existence of closely-related haplotypes in geographically distant populations, which is difficult to detect in most of Europe because of a lack of overall genetic structure. CONCLUSION: In regions that were not prone to marked glaciations, recent moth introductions/expansions could be detected due to the existence of a strong spatial genetic structure. In contrast, in regions that experienced the most intense Quaternary climatic oscillations, the natural populations are not genetically structured, and contemporary patterns of population expansion remain undetected.


Subject(s)
Climate , Evolution, Molecular , Genetic Variation , Genetics, Population , Moths/genetics , Animals , DNA, Mitochondrial/genetics , Europe , Genes, Insect , Geography , Haplotypes , Mitochondria/genetics , Phylogeny , Sequence Analysis, DNA
3.
BMC Genomics ; 9: 331, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18627592

ABSTRACT

BACKGROUND: Knowledge of animal mitochondrial genomes is very important to understand their molecular evolution as well as for phylogenetic and population genetic studies. The Lepidoptera encompasses more than 160,000 described species and is one of the largest insect orders. To date only nine lepidopteran mitochondrial DNAs have been fully and two others partly sequenced. Furthermore the taxon sampling is very scant. Thus advance of lepidopteran mitogenomics deeply requires new genomes derived from a broad taxon sampling. In present work we describe the mitochondrial genome of the moth Ochrogaster lunifer. RESULTS: The mitochondrial genome of O. lunifer is a circular molecule 15593 bp long. It includes the entire set of 37 genes usually present in animal mitochondrial genomes. It contains also 7 intergenic spacers. The gene order of the newly sequenced genome is that typical for Lepidoptera and differs from the insect ancestral type for the placement of trnM. The 77.84% A+T content of its alpha strand is the lowest among known lepidopteran genomes. The mitochondrial genome of O. lunifer exhibits one of the most marked C-skew among available insect Pterygota genomes. The protein-coding genes have typical mitochondrial start codons except for cox1 that present an unusual CGA. The O. lunifer genome exhibits the less biased synonymous codon usage among lepidopterans. Comparative genomics analysis study identified atp6, cox1, cox2 as cox3, cob, nad1, nad2, nad4, and nad5 as potential markers for population genetics/phylogenetics studies. A peculiar feature of O. lunifer mitochondrial genome it that the intergenic spacers are mostly made by repetitive sequences. CONCLUSION: The mitochondrial genome of O. lunifer is the first representative of superfamily Noctuoidea that account for about 40% of all described Lepidoptera. New genome shares many features with other known lepidopteran genomes. It differs however for its low A+T content and marked C-skew. Compared to other lepidopteran genomes it is less biased in synonymous codon usage. Comparative evolutionary analysis of lepidopteran mitochondrial genomes allowed the identification of previously neglected coding genes as potential phylogenetic markers. Presence of repetitive elements in intergenic spacers of O. lunifer genome supports the role of DNA slippage as possible mechanism to produce spacers during replication.


Subject(s)
Genome, Mitochondrial , Genomics/methods , Moths/genetics , Animals , Base Composition , Base Pair Mismatch , Base Sequence , Chromosome Mapping , Codon, Initiator , Codon, Terminator , DNA, Intergenic , Gene Order , Microsatellite Repeats , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Ribosomal/genetics , RNA, Transfer/genetics , Sequence Analysis, DNA
4.
Mol Ecol ; 11(11): 2435-44, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12406253

ABSTRACT

The winter pine processionary moth has become an important pine pest in the last century, as a consequence of the spread of pine cultivation in the Mediterranean region. The pattern of genetic differentiation of this group, that includes two sibling species (Thaumetopoea pityocampa and Th. wilkinsoni), has been studied in nine populations using amplified fragment length polymorphism (AFLP) and single strand conformation polymorphism-sequence analysis (SSCP) of the mitochondrial cytochrome oxidase 1 (COI) and cytochrome oxydase 2 (COII). Results indicate the existence of strong genetic differentiation between the two species that became separated before the Quaternary ice ages. Moreover data indicate that Th. pityocampa has a strong geographical structure, particularly evident at the nuclear level, where all pairwise phiST resulted to be highly significant and individuals from the same population resulted to be strongly clustered when an individual tree was reconstructed. The estimates of the absolute number of migrants between populations (Nm), obtained from mitochondrial and nuclear DNA markers, suggest that gene flow is low and that a gender-related dispersal could occur in this species. The males appear to disperse more than females, contributing to the genetic diversity of populations on a relatively wide range, reducing the risks of inbreeding and the genetic loss associated with bottlenecks occurring in isolated populations.


Subject(s)
DNA, Mitochondrial , Genetic Markers , Genetic Variation , Moths/genetics , Animals , Cell Nucleus/genetics , Gene Pool , Genetics, Population , Mediterranean Region , Molecular Sequence Data , Polymorphism, Restriction Fragment Length , Polymorphism, Single-Stranded Conformational
SELECTION OF CITATIONS
SEARCH DETAIL
...