Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 33(1): 108225, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33027663

ABSTRACT

Endogenous PIEZO1 channels of native endothelium lack the hallmark inactivation often seen when these channels are overexpressed in cell lines. Because prior work showed that the force of shear stress activates sphingomyelinase in endothelium, we considered if sphingomyelinase is relevant to endogenous PIEZO1. Patch clamping was used to quantify PIEZO1-mediated signals in freshly isolated murine endothelium exposed to the mechanical forces caused by shear stress and membrane stretch. Neutral sphingomyelinase inhibitors and genetic disruption of sphingomyelin phosphodiesterase 3 (SMPD3) cause PIEZO1 to switch to profoundly inactivating behavior. Ceramide (a key product of SMPD3) rescues non-inactivating channel behavior. Its co-product, phosphoryl choline, has no effect. In contrast to ceramide, sphingomyelin (the SMPD3 substrate) does not affect inactivation but alters channel force sensitivity. The data suggest that sphingomyelinase activity, ceramide, and sphingomyelin are determinants of native PIEZO gating that enable sustained activity.


Subject(s)
Ion Channels/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Animals , Humans , Mice
2.
Geroscience ; 39(5-6): 499-550, 2017 12.
Article in English | MEDLINE | ID: mdl-29270905

ABSTRACT

A paradox is a seemingly absurd or impossible concept, proposition, or theory that is often difficult to understand or explain, sometimes apparently self-contradictory, and yet ultimately correct or true. How is it possible, for example, that oxygen "a toxic environmental poison" could be also indispensable for life (Beckman and Ames Physiol Rev 78(2):547-81, 1998; Stadtman and Berlett Chem Res Toxicol 10(5):485-94, 1997)?: the so-called Oxygen Paradox (Davies and Ursini 1995; Davies Biochem Soc Symp 61:1-31, 1995). How can French people apparently disregard the rule that high dietary intakes of cholesterol and saturated fats (e.g., cheese and paté) will result in an early death from cardiovascular diseases (Renaud and de Lorgeril Lancet 339(8808):1523-6, 1992; Catalgol et al. Front Pharmacol 3:141, 2012; Eisenberg et al. Nat Med 22(12):1428-1438, 2016)?: the so-called, French Paradox. Doubtless, the truth is not a duality and epistemological bias probably generates apparently self-contradictory conclusions. Perhaps nowhere in biology are there so many apparently contradictory views, and even experimental results, affecting human physiology and pathology as in the fields of free radicals and oxidative stress, antioxidants, foods and drinks, and dietary recommendations; this is particularly true when issues such as disease-susceptibility or avoidance, "healthspan," "lifespan," and ageing are involved. Consider, for example, the apparently paradoxical observation that treatment with low doses of a substance that is toxic at high concentrations may actually induce transient adaptations that protect against a subsequent exposure to the same (or similar) toxin. This particular paradox is now mechanistically explained as "Adaptive Homeostasis" (Davies Mol Asp Med 49:1-7, 2016; Pomatto et al. 2017a; Lomeli et al. Clin Sci (Lond) 131(21):2573-2599, 2017; Pomatto and Davies 2017); the non-damaging process by which an apparent toxicant can activate biological signal transduction pathways to increase expression of protective genes, by mechanisms that are completely different from those by which the same agent induces toxicity at high concentrations. In this review, we explore the influences and effects of paradoxes such as the Oxygen Paradox and the French Paradox on the etiology, progression, and outcomes of many of the major human age-related diseases, as well as the basic biological phenomenon of ageing itself.


Subject(s)
Adaptation, Physiological , Aging/genetics , Diet, High-Protein/statistics & numerical data , Hypercholesterolemia/epidemiology , Oxidative Stress/physiology , Oxygen/metabolism , Aged , Aged, 80 and over , Aging/physiology , Female , France , Free Radicals/metabolism , Geriatric Assessment , Humans , Male , Middle Aged , Risk Assessment
3.
Stem Cells ; 27(11): 2734-43, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19591227

ABSTRACT

Recent studies showed that mesenchymal stem cells (MSCs) transplantation significantly decreased cardiac fibrosis; however, the mechanisms involved in these effects are still poorly understood. In this work, we investigated whether the antifibrotic properties of MSCs involve the regulation of matrix metalloproteinases (MMPs) and matrix metalloproteinase endogenous inhibitor (TIMP) production by cardiac fibroblasts. In vitro experiments showed that conditioned medium from MSCs decreased viability, alpha-smooth muscle actin expression, and collagen secretion of cardiac fibroblasts. These effects were concomitant with the stimulation of MMP-2/MMP-9 activities and membrane type 1 MMP expression. Experiments performed with fibroblasts from MMP2-knockout mice demonstrated that MMP-2 plays a preponderant role in preventing collagen accumulation upon incubation with conditioned medium from MSCs. We found that MSC-conditioned medium also decreased the expression of TIMP2 in cardiac fibroblasts. In vivo studies showed that intracardiac injection of MSCs in a rat model of postischemic heart failure induced a significant decrease in ventricular fibrosis. This effect was associated with the improvement of morphological and functional cardiac parameters. In conclusion, we showed that MSCs modulate the phenotype of cardiac fibroblasts and their ability to degrade extracellular matrix. These properties of MSCs open new perspectives for understanding the mechanisms of action of MSCs and anticipate their potential therapeutic or side effects.


Subject(s)
Collagenases/metabolism , Fibroblasts/metabolism , Fibrosis/prevention & control , Mesenchymal Stem Cells/physiology , Myocardial Infarction/pathology , Actins/metabolism , Animals , Blotting, Western , Cell Survival/drug effects , Cells, Cultured , Collagen/metabolism , Culture Media, Conditioned/pharmacology , Echocardiography , Fibroblasts/drug effects , Heart Ventricles/drug effects , Heart Ventricles/pathology , Immunohistochemistry , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Knockout , Myocardial Infarction/metabolism , Myocardial Infarction/therapy , Polymerase Chain Reaction , Quantum Dots , Rats , Tissue Inhibitor of Metalloproteinase-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...