Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
JCI Insight ; 8(4)2023 02 22.
Article in English | MEDLINE | ID: mdl-36633909

ABSTRACT

Newborns are at high risk of developing neonatal sepsis, particularly if born prematurely. This has been linked to divergent requirements the immune system has to fulfill during intrauterine compared with extrauterine life. By transcriptomic analysis of fetal and adult neutrophils, we shed new light on the molecular mechanisms of neutrophil maturation and functional adaption during fetal ontogeny. We identified an accumulation of differentially regulated genes within the noncanonical NF-κB signaling pathway accompanied by constitutive nuclear localization of RelB and increased surface expression of TNF receptor type II in fetal neutrophils, as well as elevated levels of lymphotoxin α in fetal serum. Furthermore, we found strong upregulation of the negative inflammatory regulator A20 (Tnfaip3) in fetal neutrophils, which was accompanied by pronounced downregulation of the canonical NF-κB pathway. Functionally, overexpressing A20 in Hoxb8 cells led to reduced adhesion of these neutrophil-like cells in a flow chamber system. Conversely, mice with a neutrophil-specific A20 deletion displayed increased inflammation in vivo. Taken together, we have uncovered constitutive activation of the noncanonical NF-κB pathway with concomitant upregulation of A20 in fetal neutrophils. This offers perfect adaption of neutrophil function during intrauterine fetal life but also restricts appropriate immune responses particularly in prematurely born infants.


Subject(s)
NF-kappa B , Neutrophil Infiltration , Tumor Necrosis Factor alpha-Induced Protein 3 , Animals , Humans , Mice , Inflammation , Neonatal Sepsis/genetics , Neonatal Sepsis/metabolism , Neutrophil Infiltration/genetics , NF-kappa B/metabolism , Signal Transduction/physiology , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
2.
Cancers (Basel) ; 14(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35454906

ABSTRACT

The hostile tumor microenvironment (TME) is a major challenge for the treatment of solid tumors with T-cell receptor (TCR)-modified T-cells (TCR-Ts), as it negatively influences T-cell efficacy, fitness, and persistence. These negative influences are caused, among others, by the inhibitory checkpoint PD-1/PD-L1 axis. The Preferentially Expressed Antigen in Melanoma (PRAME) is a highly relevant cancer/testis antigen for TCR-T immunotherapy due to broad expression in multiple solid cancer indications. A TCR with high specificity and sensitivity for PRAME was isolated from non-tolerized T-cell repertoires and introduced into T-cells alongside a chimeric PD1-41BB receptor, consisting of the natural extracellular domain of PD-1 and the intracellular signaling domain of 4-1BB, turning an inhibitory pathway into a T-cell co-stimulatory pathway. The addition of PD1-41BB to CD8+ T-cells expressing the transgenic PRAME-TCR enhanced IFN-γ secretion, improved cytotoxic capacity, and prevented exhaustion upon repetitive re-challenge with tumor cells in vitro without altering the in vitro safety profile. Furthermore, a single dose of TCR-Ts co-expressing PD1-41BB was sufficient to clear a hard-to-treat melanoma xenograft in a mouse model, whereas TCR-Ts without PD1-41BB could not eradicate the PD-L1-positive tumors. This cutting-edge strategy supports development efforts to provide more effective TCR-T immunotherapies for the treatment of solid tumors.

3.
Front Cell Dev Biol ; 8: 708, 2020.
Article in English | MEDLINE | ID: mdl-32850828

ABSTRACT

Development and homeostasis of blood vessels critically depend on the regulation of endothelial cell-cell junctions. VE-cadherin (VEcad)-based cell-cell junctions are connected to the actin cytoskeleton and regulated by actin-binding proteins. Coronin 1B (Coro1B) is an actin binding protein that controls actin networks at classical lamellipodia. The role of Coro1B in endothelial cells (ECs) is not fully understood and investigated in this study. Here, we demonstrate that Coro1B is a novel component and regulator of cell-cell junctions in ECs. Immunofluorescence studies show that Coro1B colocalizes with VEcad at cell-cell junctions in monolayers of ECs. Live-cell imaging reveals that Coro1B is recruited to, and operated at actin-driven membrane protrusions at cell-cell junctions. Coro1B is recruited to cell-cell junctions via a mechanism that requires the relaxation of the actomyosin cytoskeleton. By analyzing the Coro1B interactome, we identify integrin-linked kinase (ILK) as new Coro1B-associated protein. Coro1B colocalizes with α-parvin, an interactor of ILK, at the leading edge of lamellipodia protrusions. Functional experiments reveal that depletion of Coro1B causes defects in the actin cytoskeleton and cell-cell junctions. Finally, in matrigel tube network assays, depletion of Coro1B results in reduced network complexity, tube number and tube length. Together, our findings point toward a critical role for Coro1B in the dynamic remodeling of endothelial cell-cell junctions and the assembly of endothelial networks.

4.
J Am Soc Nephrol ; 31(2): 257-278, 2020 02.
Article in English | MEDLINE | ID: mdl-31932472

ABSTRACT

BACKGROUND: Mononuclear phagocytes (MPs), including macrophages, monocytes, and dendritic cells (DCs), are phagocytic cells with important roles in immunity. The developmental origin of kidney DCs has been highly debated because of the large phenotypic overlap between macrophages and DCs in this tissue. METHODS: We used fate mapping, RNA sequencing, flow cytometry, confocal microscopy, and histo-cytometry to assess the origin and phenotypic and functional properties of renal DCs in healthy kidney and of DCs after cisplatin and ischemia reperfusion-induced kidney injury. RESULTS: Adult kidney contains at least four subsets of MPs with prominent Clec9a-expression history indicating a DC origin. We demonstrate that these populations are phenotypically, functionally, and transcriptionally distinct from each other. We also show these kidney MPs exhibit unique age-dependent developmental heterogeneity. Kidneys from newborn mice contain a prominent population of embryonic-derived MHCIInegF4/80hiCD11blow macrophages that express T cell Ig and mucin domain containing 4 (TIM-4) and MER receptor tyrosine kinase (MERTK). These macrophages are replaced within a few weeks after birth by phenotypically similar cells that express MHCII but lack TIM-4 and MERTK. MHCII+F4/80hi cells exhibit prominent Clec9a-expression history in adulthood but not early life, indicating additional age-dependent developmental heterogeneity. In AKI, MHCIInegF4/80hi cells reappear in adult kidneys as a result of MHCII downregulation by resident MHCII+F4/80hi cells, possibly in response to prostaglandin E2 (PGE2). RNA sequencing further suggests MHCII+F4/80hi cells help coordinate the recruitment of inflammatory cells during renal injury. CONCLUSIONS: Distinct developmental programs contribute to renal DC and macrophage populations throughout life, which could have important implications for therapies targeting these cells.


Subject(s)
Dendritic Cells/immunology , Kidney/immunology , Macrophages/immunology , Nephritis/immunology , Acute Kidney Injury/immunology , Age Factors , Animals , CD11b Antigen/analysis , CX3C Chemokine Receptor 1/analysis , Calcium-Binding Proteins/analysis , Cisplatin/pharmacology , Histocompatibility Antigens Class II/analysis , Kidney/drug effects , Kidney/metabolism , Lectins, C-Type/analysis , Mice , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/analysis , Receptors, Immunologic/analysis
5.
J Exp Med ; 216(2): 350-368, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30647120

ABSTRACT

Heart failure due to dilated cardiomyopathy is frequently caused by myocarditis. However, the pathogenesis of myocarditis remains incompletely understood. Here, we report the presence of neutrophil extracellular traps (NETs) in cardiac tissue of patients and mice with myocarditis. Inhibition of NET formation in experimental autoimmune myocarditis (EAM) of mice substantially reduces inflammation in the acute phase of the disease. Targeting the cytokine midkine (MK), which mediates NET formation in vitro, not only attenuates NET formation in vivo and the infiltration of polymorphonuclear neutrophils (PMNs) but also reduces fibrosis and preserves systolic function during EAM. Low-density lipoprotein receptor-related protein 1 (LRP1) acts as the functionally relevant receptor for MK-induced PMN recruitment as well as NET formation. In summary, NETosis substantially contributes to the pathogenesis of myocarditis and drives cardiac inflammation, probably via MK, which promotes PMN trafficking and NETosis. Thus, MK as well as NETs may represent novel therapeutic targets for the treatment of cardiac inflammation.


Subject(s)
Autoimmune Diseases/immunology , Cell Movement/immunology , Extracellular Traps/immunology , Midkine/immunology , Myocarditis/immunology , Myocardium/immunology , Neutrophils/immunology , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology , Cell Movement/genetics , Extracellular Traps/genetics , Humans , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Low Density Lipoprotein Receptor-Related Protein-1/immunology , Mice , Mice, Transgenic , Midkine/genetics , Myocarditis/genetics , Myocarditis/pathology , Myocardium/pathology , Neutrophils/pathology , Receptors, LDL/genetics , Receptors, LDL/immunology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/immunology
6.
Front Immunol ; 9: 2680, 2018.
Article in English | MEDLINE | ID: mdl-30505310

ABSTRACT

Cell migration is indispensable for various biological processes including angiogenesis, wound healing, and immunity. In general, there are two different migration modes described, the mesenchymal migration mode and the amoeboid migration mode. Neutrophils rapidly migrate toward the sites of injury, infection, and inflammation using the amoeboid migration mode which is characterized by cell polarization and a high migration velocity. During site-directed trafficking of neutrophils from the blood stream into the inflamed tissue, neutrophils must first withstand shear stress while migrating on the 2-dimensional endothelial surface. Subsequently, they have to cross different physical barriers during the extravasation process including the squeezing through the compact endothelial monolayer that comprises the blood vessel, the underlining basement membrane and then the 3-dimensional meshwork of extracellular matrix (ECM) proteins in the tissue. Therefore, neutrophils have to rapidly switch between distinct migration modes such as intraluminal crawling, transmigration, and interstitial migration to pass these different confinements and mechanical barriers. The nucleus is the largest and stiffest organelle in every cell and is therefore the key cellular element involved in cellular migration through variable confinements. This review highlights the importance of nuclear deformation during neutrophil crossing of such confinements, with a focus on transendothelial migration and interstitial migration. We discuss the key molecular components involved in the nuclear shape changes that underlie neutrophil motility and squeezing through cellular and ECM barriers. Understanding the precise molecular mechanisms that orchestrate these distinct neutrophil migration modes introduces an opportunity to develop new therapeutic concepts for controlling pathological neutrophil-driven inflammation.


Subject(s)
Cell Nucleus/physiology , Inflammation/immunology , Neutrophils/immunology , Transendothelial and Transepithelial Migration/immunology , Animals , Cellular Microenvironment , Humans , Immunity, Innate , Mice , Nuclear Envelope/metabolism , Pseudopodia , Receptors, Cytoplasmic and Nuclear/metabolism , Lamin B Receptor
7.
J Immunol ; 201(6): 1748-1764, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30068598

ABSTRACT

Neutrophils are the first leukocytes to arrive at sites of injury during the acute inflammatory response. To maintain the polarized morphology during migration, nonmuscle myosins class II are essential, but studies using genetic models to investigate the role of Myh9 for neutrophil migration were missing. In this study, we analyzed the functional role of Myh9 on neutrophil trafficking using genetic downregulation of Myh9 in Vav-iCre+/Myh9wt/fl mice because the complete knockout of Myh9 in the hematopoietic system was lethal. Migration velocity and Euclidean distance were significantly diminished during mechanotactic migration of Vav-iCre+/Myh9wt/fl neutrophils compared with Vav-iCre-/Myh9wt/fl control neutrophils. Similar results were obtained for transmigration and migration in confined three-dimensional environments. Stimulated emission depletion nanoscopy revealed that a certain threshold of Myh9 was required to maintain proper F-actin dynamics in the front of the migrating cell. In laser-induced skin injury and in acute peritonitis, reduced Myh9 expression in the hematopoietic system resulted in significantly diminished neutrophil extravasation. Investigation of bone marrow chimeric mice in the peritonitis model revealed that the migration defect was cell intrinsic. Expression of Myh9-EGFP rescued the Myh9-related defects in two-dimensional and three-dimensional migration of Hoxb8-SCF cell-derived neutrophils generated from fetal liver cells with a Myh9 knockdown. Live cell imaging provided evidence that Myh9 was localized in branching lamellipodia and in the uropod where it may enable fast neutrophil migration. In summary, the severe migration defects indicate an essential and fundamental role of Myh9 for neutrophil trafficking in innate immunity.


Subject(s)
Cell Movement/immunology , Immunity, Innate , Neutrophil Infiltration , Neutrophils/immunology , Nonmuscle Myosin Type IIA/immunology , Pseudopodia/immunology , Actins/genetics , Actins/immunology , Animals , Cell Movement/genetics , Mice , Mice, Transgenic , Myosin Heavy Chains , Neutrophils/pathology , Nonmuscle Myosin Type IIA/genetics , Peritonitis/genetics , Peritonitis/immunology , Peritonitis/pathology , Pseudopodia/genetics , Skin/immunology , Skin/injuries , Skin/pathology
8.
Eur J Clin Invest ; 48 Suppl 2: e12966, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29896791

ABSTRACT

BACKGROUND: Neutrophil recruitment during acute inflammation critically depends on the spatial and temporal regulation of ß2 integrins (CD11/CD18). This regulation occurs by inside-out and outside-in signalling via interaction of cytoplasmic proteins with the intracellular domains of the integrin α- and ß-subunits. The underlying molecular mechanisms regulating ß2 integrins in neutrophils are still incompletely understood. AIM: This review provides a comprehensive overview of our current knowledge on proteins interacting with the cytoplasmic tail of CD18, the conserved ß-subunit of ß2 integrins, their regulation and their functional importance for neutrophil trafficking during acute inflammation. RESULTS: A total of 22 proteins including Talin, Kindlin 3 and Coronin 1A have been reported to interact with the CD18 cytoplasmic tail. Here, proteins binding to the cytoplasmic domain of CD18 in experiments using purified, recombinant proteins or peptides in, for example, pull-down assays, are defined as direct interactors. Proteins that have been shown to interact with the cytoplasmic domain of CD18 using whole cell lysates in, for example, pull-down experiments are claimed as interacting proteins without evidence for direct interaction. In summary, ß2 integrin activation and signalling depend on a specific subset of proteins interacting with CD18 and their precise regulation. If disturbed, profound defects of neutrophil recruitment and activation become evident compromising the innate immune response. CONCLUSIONS: The knowledge of proteins interacting with ß2 integrins and their regulation during neutrophil trafficking does not only improve our basic understanding of innate immunity but may pave the way to novel therapeutic strategies in the treatment of inflammatory diseases.


Subject(s)
CD18 Antigens/physiology , Neutrophils/physiology , Cell Adhesion/physiology , Cell Movement/physiology , Humans , Neutrophil Infiltration/physiology , Protein Binding/physiology , Proteins/physiology , Signal Transduction/physiology
9.
Blood ; 131(17): 1887-1898, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29487067

ABSTRACT

Neutrophil extravasation and interstitial migration are important steps during the recruitment of neutrophils to sites of inflammation. In the present study, we addressed the functional importance of the unconventional class I myosin 1f (Myo1f) for neutrophil trafficking during acute inflammation. In contrast to leukocyte rolling and adhesion, the genetic absence of Myo1f severely compromised neutrophil extravasation into the inflamed mouse cremaster tissue when compared with Myo1f+/+ mice as studied by intravital microscopy. Similar results were obtained in experimental models of acute peritonitis and acute lung injury. In contrast to 2-dimensional migration, which occurred independently of Myo1f, Myo1f was indispensable for neutrophil migration in 3-dimensional (3D) environments, that is, transmigration and migration in collagen networks as it regulated squeezing and dynamic deformation of the neutrophil nucleus during migration through physical barriers. Thus, we provide evidence for an important role of Myo1f in neutrophil trafficking during inflammation by specifically regulating neutrophil extravasation and migration in 3D environments.


Subject(s)
Abdominal Muscles/metabolism , Acute Lung Injury/metabolism , Cell Movement , Myosin Type I/metabolism , Neutrophil Infiltration , Neutrophils/metabolism , Peritonitis/metabolism , Abdominal Muscles/pathology , Acute Disease , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Animals , Disease Models, Animal , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Knockout , Myosin Type I/genetics , Neutrophils/pathology , Peritonitis/genetics , Peritonitis/pathology
10.
Arterioscler Thromb Vasc Biol ; 38(5): 1007-1019, 2018 05.
Article in English | MEDLINE | ID: mdl-29567680

ABSTRACT

OBJECTIVE: Cardiovascular diseases and depression are the leading causes of disability in Western countries. Clinical data on potential cardiovascular effects of serotonin reuptake inhibitors (SSRIs), the most commonly used antidepressant drugs, are controversial. In addition to blocking serotonin reuptake transporter in the brain, SSRIs deplete the major peripheral serotonin (5-hydroxytryptamine [5-HT]) storage by inhibiting serotonin reuptake transporter-mediated uptake in platelets. In this study, we aimed to investigate the effect of chronic SSRI intake on the development of atherosclerosis. APPROACH AND RESULTS: Treatment of apolipoprotein E-deficient mice with the SSRI fluoxetine for 2, 4, or 16 weeks increased atherosclerotic lesion formation, with most pronounced effect during early plaque development. Intravital microscopy of carotid arteries revealed enhanced myeloid cell adhesion on fluoxetine treatment. Mechanistically, we found that fluoxetine augmented vascular permeability and increased chemokine-induced integrin-binding activity of circulating leukocytes. In vitro stimulation of murine blood demonstrated that fluoxetine, but not 5-HT, could directly promote ß1 and ß2 integrin activation provided C-C motif chemokine ligand 5 was also present. Similar effects were observed with the SSRI escitalopram. Enhanced C-C motif chemokine ligand 5-induced integrin activation by fluoxetine was also confirmed in a human neutrophil-like cell line. In contrast to the proatherogenic properties of fluoxetine, pharmacological inhibition of the peripheral 5-HT synthesizing enzyme tryptophan hydroxylase 1 did not promote atherosclerosis, suggesting that the proatherogenic effect of fluoxetine occurs independent of peripheral 5-HT depletion. CONCLUSIONS: SSRI intake may promote atherosclerosis and therefore potentially increase the risk for acute cardiovascular events by a mechanism that is independent of 5-HT depletion.


Subject(s)
Aorta/drug effects , Aortic Diseases/chemically induced , Atherosclerosis/chemically induced , Carotid Arteries/drug effects , Carotid Artery Diseases/chemically induced , Fluoxetine/toxicity , Plaque, Atherosclerotic , Selective Serotonin Reuptake Inhibitors/toxicity , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/blood , Aortic Diseases/genetics , Aortic Diseases/pathology , Atherosclerosis/blood , Atherosclerosis/genetics , Atherosclerosis/pathology , Blood Platelets/drug effects , Blood Platelets/metabolism , CD18 Antigens/blood , Capillary Permeability/drug effects , Carotid Arteries/metabolism , Carotid Arteries/pathology , Carotid Artery Diseases/blood , Carotid Artery Diseases/genetics , Carotid Artery Diseases/pathology , Cell Adhesion/drug effects , Chemokine CCL5/blood , Disease Models, Animal , Disease Progression , Drug Administration Schedule , Fluoxetine/administration & dosage , HEK293 Cells , HL-60 Cells , Humans , Integrin beta1/blood , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Myeloid Cells/drug effects , Myeloid Cells/metabolism , Serotonin/blood , Selective Serotonin Reuptake Inhibitors/administration & dosage , Signal Transduction , Time Factors
11.
Blood ; 130(7): 847-858, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28615221

ABSTRACT

Trafficking of polymorphonuclear neutrophils (PMNs) during inflammation critically depends on the ß2 integrins lymphocyte function-associated antigen 1 (LFA-1) (CD11a/CD18) and macrophage-1 antigen (CD11b/CD18). Here, we identify coronin 1A (Coro1A) as a novel regulator of ß2 integrins that interacts with the cytoplasmic tail of CD18 and is crucial for induction of PMN adhesion and postadhesion events, including adhesion strengthening, spreading, and migration under flow conditions. Transition of PMN rolling to firm adhesion critically depends on Coro1A by regulating the accumulation of high-affinity LFA-1 in focal zones of adherent cells. Defective integrin affinity regulation in the genetic absence of Coro1A impairs leukocyte adhesion and extravasation in inflamed cremaster muscle venules in comparison with control animals. In a Helicobacter pylori mouse infection model, PMN infiltration into the gastric mucosa is dramatically reduced in Coro1A-/- mice, resulting in an attenuated gastric inflammation. Thus, Coro1A represents an important novel player in integrin biology, with key functions in PMN trafficking during innate immunity.


Subject(s)
4-Butyrolactone/analogs & derivatives , CD18 Antigens/metabolism , Cell Movement , Immunity, Innate , Neutrophils/cytology , Neutrophils/metabolism , 4-Butyrolactone/metabolism , Actins/metabolism , Animals , Calcium Signaling , Cell Adhesion , Gastritis/immunology , Gastritis/microbiology , Gastritis/pathology , Helicobacter pylori/physiology , Lymphocyte Function-Associated Antigen-1/metabolism , Macrophage-1 Antigen/metabolism , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/metabolism , Rheology
12.
Eur J Cell Biol ; 96(6): 553-566, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28595776

ABSTRACT

The primary defense machinery to combat inflammation involves neutrophil granulocytes which in order to execute their functions rely on the efficiency of different cellular mechanisms including adhesion, spreading, migration in different environments, and phagocytosis. These functions require an accurately regulated actin network as well as the activation and adjustment of various signaling pathways. Mammalian filamins (FLNs) comprise three highly homologous large actin-binding proteins that are obvious candidates to control these processes as FLNs have been described to play a role in migration, spreading and adhesion in a variety of different cell types. The present study analyzed the role of filamin A (FLNa) in human neutrophil-like HL-60 cells. We found a strong enrichment of FLNa at the uropod of migrating neutrophils, and show that deficiency of FLNa caused a decrease in speed of migration both in 2D and 3D that is accompanied by a reduced activation of myosin-II. In addition, we show that FLNa plays a role in neutrophil phagocytosis. We also identified a hitherto unknown interaction of FLNa with coronin 1A that is mediated by FLNa repeats 9-18. FLNa deficiency had no or only minor effects on cell adhesion and spreading. In summary, deficiency of FLNa in human neutrophil-like HL-60 cells resulted in a surprisingly subtle phenotype. Our data indicate that FLNa is not essential for the regulation of mechanical properties during migration, but contributes to motility in a modulatory manner probably through its action at the uropod.


Subject(s)
Filamins/genetics , Inflammation/genetics , Microfilament Proteins/genetics , Phagocytosis/genetics , Actins/genetics , Actins/metabolism , Cell Adhesion/genetics , Cell Movement/genetics , Filamins/metabolism , Granulocytes/metabolism , Granulocytes/pathology , HL-60 Cells , Humans , Inflammation/metabolism , Inflammation/pathology , Microfilament Proteins/metabolism , Neutrophils/metabolism , Neutrophils/pathology , Signal Transduction
13.
Circulation ; 134(16): 1176-1188, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27660294

ABSTRACT

BACKGROUND: Therapeutic targeting of arterial leukocyte recruitment in the context of atherosclerosis has been disappointing in clinical studies. Reasons for such failures include the lack of knowledge of arterial-specific recruitment patterns. Here we establish the importance of the cathepsin G (CatG) in the context of arterial myeloid cell recruitment. METHODS: Intravital microscopy of the carotid artery, the jugular vein, and cremasteric arterioles and venules in Apoe-/-and CatG-deficient mice (Apoe-/-Ctsg-/-) was used to study site-specific myeloid cell behavior after high-fat diet feeding or tumor necrosis factor stimulation. Atherosclerosis development was assessed in aortic root sections after 4 weeks of high-fat diet, whereas lung inflammation was assessed after inhalation of lipopolysaccharide. Endothelial deposition of CatG and CCL5 was quantified in whole-mount preparations using 2-photon and confocal microscopy. RESULTS: Our observations elucidated a crucial role for CatG during arterial leukocyte adhesion, an effect not found during venular adhesion. Consequently, CatG deficiency attenuates atherosclerosis but not acute lung inflammation. Mechanistically, CatG is immobilized on arterial endothelium where it activates leukocytes to firmly adhere engaging integrin clustering, a process of crucial importance to achieve effective adherence under high-shear flow. Therapeutic neutralization of CatG specifically abrogated arterial leukocyte adhesion without affecting myeloid cell adhesion in the microcirculation. Repetitive application of CatG-neutralizing antibodies permitted inhibition of atherogenesis in mice. CONCLUSIONS: Taken together, these findings present evidence of an arterial-specific recruitment pattern centered on CatG-instructed adhesion strengthening. The inhibition of this process could provide a novel strategy for treatment of arterial inflammation with limited side effects.


Subject(s)
Arteries , Cathepsin G/metabolism , Chemotaxis , Myeloid Cells/metabolism , Venules , Animals , Atherosclerosis/drug therapy , Atherosclerosis/etiology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Biomarkers , Cathepsin G/antagonists & inhibitors , Cathepsin G/genetics , Cell Adhesion/genetics , Chemokine CCL5/genetics , Chemokine CCL5/metabolism , Chemotaxis/genetics , Chemotaxis/immunology , Disease Models, Animal , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Humans , Integrins/metabolism , Leukocyte Rolling , Mice , Mice, Knockout , Microcirculation , Myeloid Cells/immunology , Protein Binding , Shear Strength
14.
J Gen Virol ; 97(7): 1658-1669, 2016 07.
Article in English | MEDLINE | ID: mdl-27043420

ABSTRACT

Mastomys coucha, an African rodent, is a useful animal model of papillomavirus infection, as it develops both premalignant and malignant skin tumors as a consequence of a persistent infection with Mastomys natalensis papillomavirus (MnPV). In this study, we mapped the MnPV transcriptome in productive lesions by both classical molecular techniques and high-throughput RNA sequencing. Combination of these methods revealed a complex and comprehensive transcription map, with novel splicing events not described in other papillomaviruses. Furthermore, these splicing occurrences could potentially lead to the expression of novel E2, E1∧E4, E7 and L2 isoforms. Expression level estimation of each transcript showed that late-region mRNAs considerably outnumber early transcripts, with species coding for L1 and E1∧E4 being the most abundant. In summary, the full transcription map assembled in this study will allow us to further understand MnPV gene expression and the mechanisms that lead to natural tumour development.


Subject(s)
Murinae/virology , Papillomaviridae/genetics , RNA, Viral/genetics , Skin Neoplasms/virology , Viral Proteins/genetics , Animals , Base Sequence , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Viral , High-Throughput Nucleotide Sequencing , Papillomavirus Infections/virology , Polyadenylation/genetics , Sequence Analysis, RNA , Transcription Initiation Site
SELECTION OF CITATIONS
SEARCH DETAIL
...