Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Genes (Basel) ; 13(8)2022 08 12.
Article in English | MEDLINE | ID: mdl-36011347

ABSTRACT

The development of swine Influenza A Virus resistance along with genetic technologies could complement current control measures to help to improve animal welfare standards and the economic efficiency of pig production. We have created a simulation model to assess the genetic and economic implications of various gene-editing methods that could be implemented in a commercial, multi-tiered swine breeding system. Our results demonstrate the length of the gene-editing program was negatively associated with genetic progress in commercial pigs and that the time required to reach fixation of resistance alleles was reduced if the efficiency of gene-editing is greater. The simulations included the resistance conferred in a digenic model, the inclusion of genetic mosaicism in progeny, and the effects of selection accuracy. In all scenarios, the level of mosaicism had a greater effect on the time required to reach resistance allele fixation and the genetic progress of the herd than gene-editing efficiency and zygote survival. The economic analysis highlights that selection accuracy will not affect the duration of gene-editing and the investment required compared to the effects of gene-editing-associated mosaicism and the swine Influenza A Virus control strategy on farms. These modelling results provide novel insights into the economic and genetic implications of targeting two genes in a commercial pig gene-editing program and the effects of selection accuracy and mosaicism.


Subject(s)
Influenza A virus , Alleles , Animals , Gene Editing/methods , Influenza A virus/genetics , Mosaicism , Swine/genetics , Zygote
2.
Vet Res Commun ; 46(2): 585-592, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34669106

ABSTRACT

Lawsonia intracellularis is the aetiological agent of proliferative enteropathy, an enteric disease endemic in swine. Survival in its intracellular niche of the ileum epithelial lining requires the capacity to subvert, repress or exploit the host immune response to create an environment conducive to bacterial propagation. To better understand how L. intracellularis survives in its intracellular niche, we have performed an investigation into the dynamic relationship between infection and the host autophagy response by immunohistochemistry in experimentally infected porcine ileum samples.Beclin1, a protein required early in the autophagy pathway was observed to be distributed with a basal to apical concentration gradient in the crypts of healthy piglets, whilst infected piglets were observed to have no gradient of distribution and an increase in the presence of Beclin1 in crypts with histological characteristics of L. intracellularis residence. Detecting microtubule-associated protein light chain 3 (LC3) is used as a method for monitoring autophagy progression as it associates with mature autophagosomes. For LC3 there was no notable change in signal intensity between crypts with characteristic L. intracellularis infection and healthy crypts of uninfected pigs. Finally, as p62 is degraded with the internal substrate of an autophagosome it was used to measure autophagic flux. There was no observed reduction or redistribution of p62.These preliminary results of the autophagy response in the ileum suggest that L. intracellularis affects autophagy. This disruption to host ileum homeostasis may provide a mechanism that assists in bacterial propagation and contributes to pathogenesis.


Subject(s)
Desulfovibrionaceae Infections , Lawsonia Bacteria , Swine Diseases , Animals , Autophagy , Beclin-1 , Desulfovibrionaceae Infections/microbiology , Desulfovibrionaceae Infections/pathology , Desulfovibrionaceae Infections/veterinary , Ileum/microbiology , Ileum/pathology , Swine , Swine Diseases/microbiology
3.
Porcine Health Manag ; 7(1): 23, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33648602

ABSTRACT

BACKGROUND: Influenza A Viruses (IAV) are endemic pathogens of significant concern in humans and multiple keystone livestock species. Widespread morbidity in swine herds negatively impacts animal welfare standards and economic performance whilst human IAV pandemics have emerged from pigs on multiple occasions. To combat the rising prevalence of swine IAV there must be effective control strategies available. MAIN BODY: The most basic form of IAV control on swine farms is through good animal husbandry practices and high animal welfare standards. To control inter-herd transmission, biosecurity considerations such as quarantining of pigs and implementing robust health and safety systems for workers help to reduce the likelihood of swine IAV becoming endemic. Closely complementing the physical on-farm practices are IAV surveillance programs. Epidemiological data is critical in understanding regional distribution and variation to assist in determining an appropriate response to outbreaks and understanding the nature of historical swine IAV epidemics and zoonoses. Medical intervention in pigs is restricted to vaccination, a measure fraught with the intrinsic difficulties of mounting an immune response against a highly mutable virus. It is the best available tool for controlling IAV in swine but is far from being a perfect solution due to its unreliable efficacy and association with an enhanced respiratory disease. Because IAV generally has low mortality rates there is a reticence in the uptake of vaccination. Novel genetic technologies could be a complementary strategy for IAV control in pigs that confers broad-acting resistance. Transgenic pigs with IAV resistance are useful as models, however the complexity of these reaching the consumer market limits them to research models. More promising are gene-editing approaches to prevent viral exploitation of host proteins and modern vaccine technologies that surpass those currently available. CONCLUSION: Using the suite of IAV control measures that are available for pigs effectively we can improve the economic productivity of pig farming whilst improving on-farm animal welfare standards and avoid facing the extensive social and financial costs of a pandemic. Fighting 'Flu in pigs will help mitigate the very real threat of a human pandemic emerging, increase security of the global food system and lead to healthier pigs.

4.
J Virol ; 94(12)2020 06 01.
Article in English | MEDLINE | ID: mdl-32269123

ABSTRACT

Avian influenza viruses occasionally infect and adapt to mammals, including humans. Swine are often described as "mixing vessels," being susceptible to both avian- and human-origin viruses, which allows the emergence of novel reassortants, such as the precursor to the 2009 H1N1 pandemic. ANP32 proteins are host factors that act as influenza virus polymerase cofactors. In this study, we describe how swine ANP32A, uniquely among the mammalian ANP32 proteins tested, supports the activity of avian-origin influenza virus polymerases and avian influenza virus replication. We further show that after the swine-origin influenza virus emerged in humans and caused the 2009 pandemic, it evolved polymerase gene mutations that enabled it to more efficiently use human ANP32 proteins. We map the enhanced proviral activity of swine ANP32A to a pair of amino acids, 106 and 156, in the leucine-rich repeat and central domains and show these mutations enhance binding to influenza virus trimeric polymerase. These findings help elucidate the molecular basis for the mixing vessel trait of swine and further our understanding of the evolution and ecology of viruses in this host.IMPORTANCE Avian influenza viruses can jump from wild birds and poultry into mammalian species such as humans or swine, but they only continue to transmit if they accumulate mammalian adapting mutations. Pigs appear uniquely susceptible to both avian and human strains of influenza and are often described as virus "mixing vessels." In this study, we describe how a host factor responsible for regulating virus replication, ANP32A, is different between swine and humans. Swine ANP32A allows a greater range of influenza viruses, specifically those from birds, to replicate. It does this by binding the virus polymerase more tightly than the human version of the protein. This work helps to explain the unique properties of swine as mixing vessels.


Subject(s)
Influenza A Virus, H1N1 Subtype/genetics , Nuclear Proteins/genetics , Orthomyxoviridae Infections/genetics , RNA-Binding Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , Animals , Binding Sites , Cell Line , Chickens , Epithelial Cells/metabolism , Epithelial Cells/virology , Gene Expression Regulation , Host Specificity , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Models, Molecular , Mutation , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Signal Transduction , Swine , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...