Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 22(16): 8353-8363, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32266913

ABSTRACT

Formamide is abundant in the interstellar medium and was also present during the formation of the Solar system through the accretion process of interstellar dust. Under the physicochemical conditions of primordial Earth, formamide could have undergone decomposition, either via dehydration (HCN + H2O) or via decarbonylation (CO + NH3). The first reactive channel provides HCN, which is an essential molecular building block for the formation of RNA/DNA bases, crucial for the emergence of life on Earth. In this work, we studied, at the CCSD(T)/cc-pVTZ level, the two competitive routes of formamide decomposition, i.e. dehydration and decarbonylation, either in liquid formamide (by using the polarization continuum model technique) or at the interface between liquid formamide and amorphous silica. Amorphous silica was adopted as a convenient model of the crystalline silica phases ubiquitously present in the primordial (and actual) Earth's crust, and also due to its relevance in catalysis, adsorption and chromatography. Results show that: (i) silica surface sites catalyse both decomposition channels by reducing the activation barriers by about 100 kJ mol-1 with respect to the reactions in homogeneous medium, and (ii) the dehydration channel, giving rise to HCN, is strongly favoured from a kinetic standpoint over decarbonylation, the latter being, instead, slightly favoured from a thermodynamic point of view.

2.
Life (Basel) ; 8(4)2018 Sep 23.
Article in English | MEDLINE | ID: mdl-30249032

ABSTRACT

Mineral surfaces have been demonstrated to play a central role in prebiotic reactions, which are understood to be at the basis of the origin of life. Among the various molecules proposed as precursors for these reactions, one of the most interesting is formamide. Formamide has been shown to be a pluripotent molecule, generating a wide distribution of relevant prebiotic products. In particular, the outcomes of its reactivity are strongly related to the presence of mineral phases acting as catalysts toward specific reaction pathways. While the mineral⁻products relationship has been deeply studied for a large pool of materials, the fundamental description of formamide reactivity over mineral surfaces at a microscopic level is missing in the literature. In particular, a key step of formamide chemistry at surfaces is adsorption on available interaction sites. This report aims to investigate the adsorption of formamide over a well-defined amorphous silica, chosen as a model mineral surface. An experimental IR investigation of formamide adsorption was carried out and its outcomes were interpreted on the basis of first principles simulation of the process, adopting a realistic model of amorphous silica.

SELECTION OF CITATIONS
SEARCH DETAIL
...