Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
RSC Adv ; 14(29): 21203-21212, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38966817

ABSTRACT

The coronavirus disease 2019 (COVID-19) has spread worldwide with severe health, social, and economic repercussions. Although vaccines have significantly reduced the severity of symptoms and deaths, alternative medications derived from natural products (NPs) are vital to further decrease fatalities, especially in regions with low vaccine uptake. When paired with the latest computational developments, NPs, which have been used to cure illnesses and infections for thousands of years, constitute a renewed resource for drug discovery. In the present report, a combination of computational and in vitro methods reveals the repositioning of NPs and identifies salvinorin A and deacetylgedunin (DCG) as having potential anti-SARS-CoV-2 activities. Salvinorin A was found both in silico and in vitro to inhibit both SARS-CoV-2 spike/host ACE2 protein interactions, consistent with blocking viral cell entry, and well as live virus replication. Plant extracts from Azadirachta indica and Cedrela odorata, which contain high levels of DCG, inhibited viral cell replication by targeting the main protease (Mpro) and/or inhibited viral cell entry by blocking the interaction between spike RBD-ACE2 protein at concentrations lower than salvinorin A. Our findings suggest that salvinorin A represent promising chemical starting points where further optimization may result in effective natural product-derived and potent anti-SARS-CoV-2 inhibitors to supplement vaccine efforts.

2.
J Neurochem ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010681

ABSTRACT

The regulation of dopamine (DA) removal from the synaptic cleft is a crucial process in neurotransmission and is facilitated by the sodium- and chloride-coupled dopamine transporter DAT. Psychostimulant drugs, cocaine, and amphetamine, both block the uptake of DA, while amphetamine also triggers the release of DA. As a result, they prolong or even amplify neurotransmitter signaling. Atypical inhibitors of DAT lack cocaine-like rewarding effects and offer a promising strategy for the treatment of drug use disorders. Here, we present the 3.2 Å resolution cryo-electron microscopy structure of the Drosophila melanogaster dopamine transporter (dDAT) in complex with the atypical non-competitive inhibitor AC-4-248. The inhibitor partially binds at the central binding site, extending into the extracellular vestibule, and locks the transporter in an outward open conformation. Our findings propose mechanisms for the non-competitive inhibition of DAT and attenuation of cocaine potency by AC-4-248 and provide a basis for the rational design of more efficacious atypical inhibitors.

3.
Cell Death Differ ; 31(7): 881-896, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38802657

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC), the most prevalent type of pancreatic cancer, is one of the deadliest forms of cancer with limited therapy options. Overexpression of the heat shock protein 70 (HSP70) is a hallmark of cancer that is strongly associated with aggressive disease and worse clinical outcomes. However, the underlying mechanisms by which HSP70 allows tumor cells to thrive under conditions of continuous stress have not been fully described. Here, we report that PDAC has the highest expression of HSP70 relative to normal tissue across all cancers analyzed. Furthermore, HSP70 expression is associated with tumor grade and is further enhanced in metastatic PDAC. We show that genetic or therapeutic ablation of HSP70 alters mitochondrial subcellular localization, impairs mitochondrial dynamics, and promotes mitochondrial swelling to induce apoptosis. Mechanistically, we find that targeting HSP70 suppresses the PTEN-induced kinase 1 (PINK1) mediated phosphorylation of dynamin-related protein 1 (DRP1). Treatment with the HSP70 inhibitor AP-4-139B was efficacious as a single agent in primary and metastatic mouse models of PDAC. In addition, we demonstrate that HSP70 inhibition promotes the AMP-activated protein kinase (AMPK) mediated phosphorylation of Beclin-1, a key regulator of autophagic flux. Accordingly, we find that the autophagy inhibitor hydroxychloroquine (HCQ) enhances the ability of AP-4-139B to mediate anti-tumor activity in vivo. Collectively, our results suggest that HSP70 is a multi-functional driver of tumorigenesis that orchestrates mitochondrial dynamics and autophagy. Moreover, these findings support the rationale for concurrent inhibition of HSP70 and autophagy as a novel therapeutic approach for HSP70-driven PDAC.


Subject(s)
Autophagy , Carcinoma, Pancreatic Ductal , HSP70 Heat-Shock Proteins , Mitochondrial Dynamics , Pancreatic Neoplasms , Mitochondrial Dynamics/drug effects , HSP70 Heat-Shock Proteins/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Autophagy/drug effects , Humans , Animals , Mice , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Cell Line, Tumor , Mitochondria/metabolism , Mitochondria/drug effects , Protein Kinases/metabolism
4.
J Nat Prod ; 87(6): 1513-1520, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38781491

ABSTRACT

Current small-molecule-based SARS-CoV-2 treatments have limited global accessibility and pose the risk of inducing viral resistance. Therefore, a marine algae and cyanobacteria extract library was screened for natural products that could inhibit two well-defined and validated COVID-19 drug targets, disruption of the spike protein/ACE-2 interaction and the main protease (Mpro) of SARS-CoV-2. Following initial screening of 86 extracts, we performed an untargeted metabolomic analysis of 16 cyanobacterial extracts. This approach led to the isolation of an unusual saturated fatty acid, jobosic acid (2,5-dimethyltetradecanoic acid, 1). We confirmed that 1 demonstrated selective inhibitory activity toward both viral targets while retaining some activity against the spike-RBD/ACE-2 interaction of the SARS-CoV-2 omicron variant. To initially explore its structure-activity relationship (SAR), the methyl and benzyl ester derivatives of 1 were semisynthetically accessed and demonstrated acute loss of bioactivity in both SARS-CoV-2 biochemical assays. Our efforts have provided copious amounts of a fatty acid natural product that warrants further investigation in terms of SAR, unambiguous determination of its absolute configuration, and understanding of its specific mechanisms of action and binding site toward new therapeutic avenues for SARS-CoV-2 drug development.


Subject(s)
Antiviral Agents , Metabolomics , SARS-CoV-2 , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Humans , Cyanobacteria/chemistry , Structure-Activity Relationship , Fatty Acids/chemistry , Fatty Acids/pharmacology , COVID-19 , Molecular Structure , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism
5.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798466

ABSTRACT

Ovarian cancer remains a major health threat with limited treatment options available. It is characterized by immunosuppressive tumor microenvironment (TME) maintained by tumor- associated macrophages (TAMs) hindering anti-tumor responses and immunotherapy efficacy. Here we show that targeting retinoblastoma protein (Rb) by disruption of its LxCxE cleft pocket, causes cell death in TAMs by induction of ER stress, p53 and mitochondria-related cell death pathways. A reduction of pro-tumor Rb high M2-type macrophages from TME in vivo enhanced T cell infiltration and inhibited cancer progression. We demonstrate an increased Rb expression in TAMs in women with ovarian cancer is associated with poorer prognosis. Ex vivo, we show analogous cell death induction by therapeutic Rb targeting in TAMs in post-surgery ascites from ovarian cancer patients. Overall, our data elucidates therapeutic targeting of the Rb LxCxE cleft pocket as a novel promising approach for ovarian cancer treatment through depletion of TAMs and re-shaping TME immune landscape. Statement of significance: Currently, targeting immunosuppressive myeloid cells in ovarian cancer microenvironment is the first priority need to enable successful immunotherapy, but no effective solutions are clinically available. We show that targeting LxCxE cleft pocket of Retinoblastoma protein unexpectedly induces preferential cell death in M2 tumor-associated macrophages. Depletion of immunosuppressive M2 tumor-associated macrophages reshapes tumor microenvironment, enhances anti-tumor T cell responses, and inhibits ovarian cancer. Thus, we identify a novel paradoxical function of Retinoblastoma protein in regulating macrophage viability as well as a promising target to enhance immunotherapy efficacy in ovarian cancer.

6.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792215

ABSTRACT

Quinazolines are an important class of heterocyclic compounds that have proven their significance, especially in the field of organic synthesis and medicinal chemistry because of their wide range of biological and pharmacological properties. Thus, numerous synthetic methods have been developed for the synthesis of quinazolines and their derivatives. This review article briefly outlines the new synthetic methods for compounds containing the quinazoline scaffold employing transition metal-catalyzed reactions.

7.
J Med Chem ; 67(8): 6119-6143, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38626917

ABSTRACT

Excitatory amino acid transporters (EAATs) are essential CNS proteins that regulate glutamate levels. Excess glutamate release and alteration in EAAT expression are associated with several CNS disorders. Previously, we identified positive allosteric modulators (PAM) of EAAT2, the main CNS transporter, and have demonstrated their neuroprotective properties in vitro. Herein, we report on the structure-activity relationships (SAR) for the analogs identified from virtual screening and from our medicinal chemistry campaign. This work identified several selective EAAT2 positive allosteric modulators (PAMs) such as compounds 4 (DA-023) and 40 (NA-014) from a library of analogs inspired by GT949, an early generation compound. This series also provides nonselective EAAT PAMs, EAAT inhibitors, and inactive compounds that may be useful for elucidating the mechanism of EAAT allosteric modulation.


Subject(s)
Excitatory Amino Acid Transporter 2 , Structure-Activity Relationship , Allosteric Regulation/drug effects , Humans , Excitatory Amino Acid Transporter 2/metabolism , HEK293 Cells , Animals , Molecular Structure
8.
Chem Zvesti ; 78(6): 3431-3441, 2024.
Article in English | MEDLINE | ID: mdl-38685970

ABSTRACT

Chemical prototypes with broad-spectrum antiviral activity are important toward developing new therapies that can act on both existing and emerging viruses. Binding of the SARS-CoV-2 spike protein to the host angiotensin-converting enzyme 2 (ACE2) receptor is required for cellular entry of SARS-CoV-2. Toward identifying new chemical leads that can disrupt this interaction, including in the presence of SARS-CoV-2 adaptive mutations found in variants like omicron that can circumvent vaccine, immune, and therapeutic antibody responses, we synthesized 5-chloro-3-(2-(2,4-dinitrophenyl)hydrazono)indolin-2-one (H2L) from the condensation reaction of 5-chloroisatin and 2,4-dinitrophenylhydrazine in good yield. H2L was characterised by elemental and spectral (IR, electronic, Mass) analyses. The NMR spectrum of H2L indicated a keto-enol tautomerism, with the keto form being more abundant in solution. H2L was found to selectively interfere with binding of the SARS-CoV-2 spike receptor-binding domain (RBD) to the host angiotensin-converting enzyme 2 receptor with a 50% inhibitory concentration (IC50) of 0.26 µM, compared to an unrelated PD-1/PD-L1 ligand-receptor-binding pair with an IC50 of 2.06 µM in vitro (Selectivity index = 7.9). Molecular docking studies revealed that the synthesized ligand preferentially binds within the ACE2 receptor-binding site in a region distinct from where spike mutations in SARS-CoV-2 variants occur. Consistent with these models, H2L was able to disrupt ACE2 interactions with the RBDs from beta, delta, lambda, and omicron variants with similar activities. These studies indicate that H2L-derived compounds are potential inhibitors of multiple SARS-CoV-2 variants, including those capable of circumventing vaccine and immune responses. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-023-03274-5.

9.
Med Chem Res ; 33(4): 620-634, 2024.
Article in English | MEDLINE | ID: mdl-38646411

ABSTRACT

Isatin (indol-2,3-dione), a secondary metabolite of tryptophan, has been used as the core structure to design several compounds that have been tested and identified as potent inhibitors of apoptosis, potential antitumor agents, anticonvulsants, and antiviral agents. In this work, several analogs of isatin hybrids have been synthesized and characterized, and their activities were established as inhibitors of both Aurora A kinase and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike/host angiotensin-converting enzyme II (ACE2) interactions. Amongst the synthesized isatin hybrids, compounds 6a, 6f, 6g, and 6m exhibited Aurora A kinase inhibitory activities (with IC50 values < 5 µM), with GScore values of -7.9, -7.6, -8.2 and -7.7 kcal/mol, respectively. Compounds 6g and 6i showed activities in blocking SARS-CoV-2 spike/ACE2 binding (with IC50 values in the range < 30 µM), with GScore values of -6.4 and -6.6 kcal/mol, respectively. Compounds 6f, 6g, and 6i were both capable of inhibiting spike/ACE2 binding and blocking Aurora A kinase. Pharmacophore profiling indicated that compound 6g tightly fits Aurora A kinase and SARS-CoV-2 pharmacophores, while 6d fits SARS-CoV-2 and 6l fits Aurora A kinase pharmacophore. This work is a proof of concept that some existing cancer drugs may possess antiviral properties. Molecular modeling showed that the active compound for each protein adopted different binding modes, hence interacting with a different set of amino acid residues in the binding site. The weaker activities against spike/ACE2 could be explained by the small sizes of the ligands that fail to address the important interactions for binding to the ACE2 receptor site.

10.
Bioorg Med Chem Lett ; 102: 129679, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38423371

ABSTRACT

Seven furanochromene-quinoline derivatives containing a hydrazone linker were synthesized by condensing a furanochromene hydrazide with quinoline 2-, 3-, 4-, 5-, 6-, and 8-carbaldehydes, including 8-hydroxyquinoline-2-carbaldehye. Structure-activity correlations were investigated to determine the influence of the location of the hydrazone linker on the quinoline unit on SARS-CoV-2 Mpro enzyme inhibition. The 3-, 5-, 6- and 8-substituted derivatives showed moderate inhibition of SARS-CoV-2 Mpro with IC50 values ranging from 16 to 44 µM. Additionally, all of the derivatives showed strong interaction with the SARS-CoV-2 Mpro substrate binding pocket, with docking energy scores ranging from -8.0 to -8.5 kcal/mol. These values are comparable to that of N3 peptide (-8.1 kcal/mol) and more favorable than GC-373 (-7.6 kcal/mol) and ML-188 (-7.5 kcal/mol), all of which are known SARS-CoV-2 Mpro inhibitors. Furthermore, in silico absorption, distribution, metabolism, and excretion (ADME) profiles indicate that the derivatives have good drug-likeness properties. Overall, this study highlights the potential of the furanochromene-quinoline hydrazone scaffold as a SARS-CoV-2 Mpro inhibitor.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Quinolines , Humans , Hydrazones/pharmacology , Molecular Docking Simulation , SARS-CoV-2 , Quinolines/pharmacology , Protease Inhibitors/pharmacology , Molecular Dynamics Simulation
11.
ACS Chem Biol ; 19(2): 233-242, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38271588

ABSTRACT

In the field of drug discovery, understanding how small molecule drugs interact with cellular components is crucial. Our study introduces a novel methodology to uncover primary drug targets using Tandem Affinity Purification for identification of Drug-Binding Proteins (TAP-DBP). Central to our approach is the generation of a FLAG-hemagglutinin (HA)-tagged chimeric protein featuring the FKBP12(F36V) adaptor protein and the TurboID enzyme. Conjugation of drug molecules with the FKBP12(F36V) ligand allows for the coordinated recruitment of drug-binding partners effectively enabling in-cell TurboID-mediated biotinylation. By employing a tandem affinity purification protocol based on FLAG-immunoprecipitation and streptavidin pulldown, alongside mass spectrometry analysis, TAP-DBP allows for the precise identification of drug-primary binding partners. Overall, this study introduces a systematic, unbiased method for identification of drug-protein interactions, contributing a clear understanding of target engagement and drug selectivity to advance the mode of action of a drug in cells.


Subject(s)
Carrier Proteins , Tandem Affinity Purification , Tandem Affinity Purification/methods , Tacrolimus Binding Protein 1A/metabolism , Proteins/metabolism , Chromatography, Affinity/methods
12.
Article in English | MEDLINE | ID: mdl-38152610

ABSTRACT

Trypanosoma brucei, the causative agent of Human African Trypanosomiasis (HAT) and animal trypanosomiases, cycles between a bloodstream form in mammals and a procyclic form in the gut of its insect vector. We previously discovered that the human bromodomain inhibitor I-BET151 causes transcriptome changes that resemble the transition from the bloodstream to the procyclic form. In particular, I-BET151 induces replacement of variant surface glycoprotein (VSG) with procyclin protein. While modest binding of I-BET151 to TbBdf2 and TbBdf3 has been demonstrated, it is unknown whether I-BET151 binds to other identified T. brucei bromodomain proteins and/or other targets. To identify target(s) in T. brucei, we have synthesized I-BET151 derivatives maintaining the key pharmacophoric elements with functionality useful for chemoproteomic approaches. We identified compounds that are potent in inducing expression of procyclin, delineating a strategy towards the design of drugs against HAT and other trypanosomiases. Furthermore, these derivatives represent useful chemical probes to elucidate the molecular mechanism underlying I-BET151-induced differentiation.

13.
Nat Cancer ; 4(10): 1491-1507, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37723305

ABSTRACT

Acetate metabolism is an important metabolic pathway in many cancers and is controlled by acetyl-CoA synthetase 2 (ACSS2), an enzyme that catalyzes the conversion of acetate to acetyl-CoA. While the metabolic role of ACSS2 in cancer is well described, the consequences of blocking tumor acetate metabolism on the tumor microenvironment and antitumor immunity are unknown. We demonstrate that blocking ACSS2, switches cancer cells from acetate consumers to producers of acetate thereby freeing acetate for tumor-infiltrating lymphocytes to use as a fuel source. We show that acetate supplementation metabolically bolsters T-cell effector functions and proliferation. Targeting ACSS2 with CRISPR-Cas9 guides or a small-molecule inhibitor promotes an antitumor immune response and enhances the efficacy of chemotherapy in preclinical breast cancer models. We propose a paradigm for targeting acetate metabolism in cancer in which inhibition of ACSS2 dually acts to impair tumor cell metabolism and potentiate antitumor immunity.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Acetyl Coenzyme A/metabolism , Cell Line, Tumor , Acetates/pharmacology , Acetates/therapeutic use , Acetates/metabolism , T-Lymphocytes/metabolism , Immunologic Factors , Tumor Microenvironment
14.
Nat Commun ; 14(1): 4480, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37528120

ABSTRACT

Cleavage and polyadenylation (CPA) is responsible for 3' end processing of eukaryotic poly(A)+ RNAs and preludes transcriptional termination. JTE-607, which targets CPSF-73, is the first known CPA inhibitor (CPAi) in mammalian cells. Here we show that JTE-607 perturbs gene expression through both transcriptional readthrough and alternative polyadenylation (APA). Sensitive genes are associated with features similar to those previously identified for PCF11 knockdown, underscoring a unified transcriptomic signature of CPAi. The degree of inhibition of an APA site by JTE-607 correlates with its usage level and, consistently, cells with elevated CPA activities, such as those with induced overexpression of FIP1, display greater transcriptomic disturbances when treated with JTE-607. Moreover, JTE-607 causes S phase crisis and is hence synergistic with inhibitors of DNA damage repair pathways. Together, our data reveal CPA activity and proliferation rate as determinants of CPAi-mediated cell death, raising the possibility of using CPAi as an adjunct therapy to suppress certain cancers.


Subject(s)
Neoplasms , Polyadenylation , Animals , RNA Precursors/genetics , RNA Precursors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism , RNA, Messenger/metabolism , Mammals/genetics , Neoplasms/genetics
15.
J Virol ; 97(8): e0065323, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37578230

ABSTRACT

HIV-infected macrophages are long-lived cells that represent a barrier to functional cure. Additionally, low-level viral expression by central nervous system (CNS) macrophages contributes to neurocognitive deficits that develop despite antiretroviral therapy (ART). We recently identified H3K9me3 as an atypical epigenetic mark associated with chronic HIV infection in macrophages. Thus, strategies are needed to suppress HIV-1 expression in macrophages, but the unique myeloid environment and the responsible macrophage/CNS-tropic strains require cell/strain-specific approaches. Here, we generated an HIV-1 reporter virus from a CNS-derived strain with intact auxiliary genes expressing destabilized luciferase. We employed this reporter virus in polyclonal infection of primary human monocyte-derived macrophages (MDM) for a high-throughput screen (HTS) to identify compounds that suppress virus expression from established macrophage infection. Screening ~6,000 known drugs and compounds yielded 214 hits. A secondary screen with 10-dose titration identified 24 meeting criteria for HIV-selective activity. Using three replication-competent CNS-derived macrophage-tropic HIV-1 isolates and viral gene expression readout in MDM, we confirmed the effect of three purine analogs, nelarabine, fludarabine, and entecavir, showing the suppression of HIV-1 expression from established macrophage infection. Nelarabine inhibited the formation of H3K9me3 on HIV genomes in macrophages. Thus, this novel HTS assay can identify suppressors of HIV-1 transcription in established macrophage infection, such as nucleoside analogs and HDAC inhibitors, which may be linked to H3K9me3 modification. This screen may be useful to identify new metabolic and epigenetic agents that ameliorate HIV-driven neuroinflammation in people on ART or prevent viral recrudescence from macrophage reservoirs in strategies to achieve ART-free remission. IMPORTANCE Macrophages infected by HIV-1 are a long-lived reservoir and a barrier in current efforts to achieve HIV cure and also contribute to neurocognitive complications in people despite antiretroviral therapy (ART). Silencing HIV expression in these cells would be of great value, but the regulation of HIV-1 in macrophages differs from T cells. We developed a novel high-throughput screen for compounds that can silence established infection of primary macrophages, and identified agents that downregulate virus expression and alter provirus epigenetic profiles. The significance of this assay is the potential to identify new drugs that act in the unique macrophage environment on relevant viral strains, which may contribute to adjunctive treatment for HIV-associated neurocognitive disorders and/or prevent viral rebound in efforts to achieve ART-free remission or cure.


Subject(s)
HIV Infections , HIV-1 , Histones , Macrophages , Humans , High-Throughput Screening Assays , HIV Infections/drug therapy , HIV-1/drug effects , Macrophages/virology , Nucleosides/pharmacology , Proviruses/genetics , Virus Replication , Epigenesis, Genetic , Histones/genetics , Genome, Viral
16.
Proc Natl Acad Sci U S A ; 120(31): e2302668120, 2023 08.
Article in English | MEDLINE | ID: mdl-37490535

ABSTRACT

Catecholamine-stimulated ß2-adrenergic receptor (ß2AR) signaling via the canonical Gs-adenylyl cyclase-cAMP-PKA pathway regulates numerous physiological functions, including the therapeutic effects of exogenous ß-agonists in the treatment of airway disease. ß2AR signaling is tightly regulated by GRKs and ß-arrestins, which together promote ß2AR desensitization and internalization as well as downstream signaling, often antithetical to the canonical pathway. Thus, the ability to bias ß2AR signaling toward the Gs pathway while avoiding ß-arrestin-mediated effects may provide a strategy to improve the functional consequences of ß2AR activation. Since attempts to develop Gs-biased agonists and allosteric modulators for the ß2AR have been largely unsuccessful, here we screened small molecule libraries for allosteric modulators that selectively inhibit ß-arrestin recruitment to the receptor. This screen identified several compounds that met this profile, and, of these, a difluorophenyl quinazoline (DFPQ) derivative was found to be a selective negative allosteric modulator of ß-arrestin recruitment to the ß2AR while having no effect on ß2AR coupling to Gs. DFPQ effectively inhibits agonist-promoted phosphorylation and internalization of the ß2AR and protects against the functional desensitization of ß-agonist mediated regulation in cell and tissue models. The effects of DFPQ were also specific to the ß2AR with minimal effects on the ß1AR. Modeling, mutagenesis, and medicinal chemistry studies support DFPQ derivatives binding to an intracellular membrane-facing region of the ß2AR, including residues within transmembrane domains 3 and 4 and intracellular loop 2. DFPQ thus represents a class of biased allosteric modulators that targets an allosteric site of the ß2AR.


Subject(s)
Arrestin , Signal Transduction , beta-Arrestins/metabolism , Arrestin/metabolism , beta-Arrestin 1/genetics , beta-Arrestin 1/metabolism , Receptors, Adrenergic/metabolism , Receptors, Adrenergic, beta-2/genetics , Receptors, Adrenergic, beta-2/metabolism
17.
Nat Commun ; 14(1): 3823, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37380658

ABSTRACT

Pancreatic Ductal Adenocarcinoma (PDAC) is highly resistant to chemotherapy. Effective alternative therapies have yet to emerge, as chemotherapy remains the best available systemic treatment. However, the discovery of safe and available adjuncts to enhance chemotherapeutic efficacy can still improve survival outcomes. We show that a hyperglycemic state substantially enhances the efficacy of conventional single- and multi-agent chemotherapy regimens against PDAC. Molecular analyses of tumors exposed to high glucose levels reveal that the expression of GCLC (glutamate-cysteine ligase catalytic subunit), a key component of glutathione biosynthesis, is diminished, which in turn augments oxidative anti-tumor damage by chemotherapy. Inhibition of GCLC phenocopies the suppressive effect of forced hyperglycemia in mouse models of PDAC, while rescuing this pathway mitigates anti-tumor effects observed with chemotherapy and high glucose.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Administration, Cutaneous , Glucose , Pancreatic Neoplasms
18.
Cancer Discov ; 13(5): 1210-1229, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36734633

ABSTRACT

Triple-negative breast cancers (TNBC) frequently inactivate p53, increasing their aggressiveness and therapy resistance. We identified an unexpected protein vulnerability in p53-inactivated TNBC and designed a new PROteolysis TArgeting Chimera (PROTAC) to target it. Our PROTAC selectively targets MDM2 for proteasome-mediated degradation with high-affinity binding and VHL recruitment. MDM2 loss in p53 mutant/deleted TNBC cells in two-dimensional/three-dimensional culture and TNBC patient explants, including relapsed tumors, causes apoptosis while sparing normal cells. Our MDM2-PROTAC is stable in vivo, and treatment of TNBC xenograft-bearing mice demonstrates tumor on-target efficacy with no toxicity to normal cells, significantly extending survival. Transcriptomic analyses revealed upregulation of p53 family target genes. Investigations showed activation and a required role for TAp73 to mediate MDM2-PROTAC-induced apoptosis. Our data, challenging the current MDM2/p53 paradigm, show MDM2 is required for p53-inactivated TNBC cell survival, and PROTAC-targeted MDM2 degradation is an innovative potential therapeutic strategy for TNBC and superior to existing MDM2 inhibitors. SIGNIFICANCE: p53-inactivated TNBC is an aggressive, therapy-resistant, and lethal breast cancer subtype. We designed a new compound targeting an unexpected vulnerability we identified in TNBC. Our MDM2-targeted degrader kills p53-inactivated TNBC cells, highlighting the requirement for MDM2 in TNBC cell survival and as a new therapeutic target for this disease. See related commentary by Peuget and Selivanova, p. 1043. This article is highlighted in the In This Issue feature, p. 1027.


Subject(s)
Proteolysis Targeting Chimera , Proto-Oncogene Proteins c-mdm2 , Triple Negative Breast Neoplasms , Tumor Suppressor Protein p53 , Humans , Animals , Mice , Cell Line, Tumor , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/physiopathology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Proteolysis Targeting Chimera/chemistry , Proteolysis Targeting Chimera/pharmacology , Proteolysis Targeting Chimera/therapeutic use , Up-Regulation/drug effects , Survival Analysis , Apoptosis/drug effects , Tumor Protein p73/metabolism , Heterografts , Proteolysis/drug effects , Female
19.
Methods Enzymol ; 681: 115-153, 2023.
Article in English | MEDLINE | ID: mdl-36764754

ABSTRACT

The In-Cell Western plate-based immunofluorescence assay is a useful methodology for monitoring protein levels and provides a facile moderate through-put method for PROTAC and degrader optimization. The method is compared to other reported assays used for PROTAC development. The advantages of this method are the greater through-put compared to Western blots due to its plate-based method and the ease to transfer between cells lines. Adherent cell lines are preferred, although suspension cells can be used following recommended modifications and precautions to the protocol. This method requires a high-quality antibody that recognizes the protein epitope in its cellular context, and in general provides data similar to Western blots with higher assay through-put.


Subject(s)
Proteins , Proteolysis , Cell Line, Tumor
20.
J Nat Prod ; 86(3): 582-588, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36657039

ABSTRACT

Thorectidiols isolated from the marine sponge Dactylospongia elegans (family Thorectidae, order Dictyoceratida) collected in Papua New Guinea are a family of symmetrical and unsymmetrical dimeric biphenyl meroterpenoid stereoisomers presumed to be products of oxidative phenol coupling of a co-occurring racemic monomer, thorectidol (3). One member of the family, thorectidiol A (1), has been isolated in its natural form, and its structure has been elucidated by analysis of NMR, MS, and ECD data. Acetylation of the sponge extract facilitated isolation of additional thorectidiol diacetate stereoisomers and the isolation of the racemic monomer thorectidol acetate (6). Racemic thorectidiol A (1) showed selective inhibition of the SARS-CoV-2 spike receptor binding domain (RBD) interaction with the host ACE2 receptor with an IC50 = 1.0 ± 0.7 µM.


Subject(s)
COVID-19 , Porifera , Animals , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Protein Binding , Porifera/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...