Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol Res ; 2023: 8846953, 2023.
Article in English | MEDLINE | ID: mdl-37881339

ABSTRACT

January 2022 onward, India witnessed a sudden increase in Omicron COVID-19 infections, having a mild course that prompted us to identify the key host factors/immune molecules modulating disease course/outcomes. The current study evaluated the percentages of lymphocyte subsets by flowcytometry, SARS-CoV-2 specific T-cell immune response by ELISPOT, estimation of plasma cytokine/chemokine levels on a Bio-plex Multiplex Immunoassay System and anti-SARS-CoV-2 IgG levels by enzyme-linked immunosorbent assay in 19 mild Omicron infected patients, 45 mild SARS-CoV-2 (2020) patients and 36 uninfected controls from India. Natural killer cells, B and memory B cells were high in vaccinated and total Omicron-infected patients groups compared to the mild SARS-CoV-2 (2020) patient group, while CD8+ T cells were high in total Omicron-infected patients group compared to the uninfected control group (p < 0.05 each). Omicron-infected patients had T-cell response against SARS-CoV-2 whole virus, S1 proteins (wild type and delta variant) in 10 out of 17 (59%), 10 out of 17 (59%), and 8 out of 17 (47%), respectively. The current study of Omicron-infected patients elucidates broadly reactive antibody, T-cell response, and participation of memory B and T cells induced by vaccination/natural infection. The limited effect of Omicron's mutations on T-cell response is suggestive of protection from severity. Pro-inflammatory IL-6, IFN-γ, chemokines CCL-2, CCL-3, CCL-4, CCL-5, and IL-8 as potential biomarkers of Omicron infection may have future diagnostic importance. The cellular immune response data in Omicron-infected patients with parental Omicron lineage could serve as a starting point to define the readouts of protective immunity against circulating Omicron subvariants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , CD8-Positive T-Lymphocytes , Antibodies, Viral , Enzyme-Linked Immunospot Assay
2.
Front Cell Infect Microbiol ; 11: 634647, 2021.
Article in English | MEDLINE | ID: mdl-33816339

ABSTRACT

Vaginal transmission accounts for majority of newly acquired HIV infections worldwide. Initial events that transpire post-viral binding to vaginal epithelium leading to productive infection in the female reproductive tract are not well elucidated. Here, we examined the interaction of HIV-1 with vaginal epithelial cells (VEC) using Vk2/E6E7, an established cell line exhibiting an HIV-binding receptor phenotype (CD4-CCR5-CD206+) similar to primary cells. We observed rapid viral sequestration, as a metabolically active process that was dose-dependent. Sequestered virus demonstrated monophasic decay after 6 hours with a half-life of 22.435 hours, though residual virus was detectable 48 hours' post-exposure. Viral uptake was not followed by successful reverse transcription and thus productive infection in VEC unlike activated PBMCs. Intraepithelial virus was infectious as evidenced by infection in trans of PHA-p stimulated PBMCs on co-culture. Trans-infection efficiency, however, deteriorated with time, concordant with viral retention kinetics, as peak levels of sequestered virus coincided with maximum viral output of co-cultivated PBMCs. Further, blocking lymphocyte receptor function-associated antigen 1 (LFA-1) expressed on PBMCs significantly inhibited trans-infection suggesting that cell-to-cell spread of HIV from epithelium to target cells was LFA-1 mediated. In addition to stimulated PBMCs, we also demonstrated infection in trans of FACS sorted CD4+ T lymphocyte subsets expressing co-receptors CCR5 and CXCR4. These included, for the first time, potentially gut homing CD4+ T cell subsets co-expressing integrin α4ß7 and CCR5. Our study thus delineates a hitherto unexplored role for the vaginal epithelium as a transient viral reservoir enabling infection of susceptible cell types.


Subject(s)
HIV Infections , HIV-1 , CD4-Positive T-Lymphocytes , Epithelial Cells , Epithelium , Female , Humans , Vagina
3.
Front Immunol ; 11: 182, 2020.
Article in English | MEDLINE | ID: mdl-32194543

ABSTRACT

Viremic non-progressors (VNPs), a distinct group of HIV-1-infected individuals, exhibit no signs of disease progression and maintain persistently elevated CD4+ T cell counts for several years despite high viral replication. Comprehensive characterization of homeostatic cellular immune signatures in VNPs can provide unique insights into mechanisms responsible for coping with viral pathogenesis as well as identifying strategies for immune restoration under clinically relevant settings such as antiretroviral therapy (ART) failure. We report a novel homeostatic signature in VNPs, the preservation of the central memory CD4+ T cell (CD4+ T CM ) compartment. In addition, CD4+ TCM preservation was supported by ongoing interleukin-7 (IL-7)-mediated thymic repopulation of naive CD4+ T cells leading to intact CD4+ T cell homeostasis in VNPs. Regulatory T cell (Treg) expansion was found to be a function of preserved CD4+ T cell count and CD4+ T cell activation independent of disease status. However, in light of continual depletion of CD4+ T cell count in progressors but not in VNPs, Tregs appear to be involved in lack of disease progression despite high viremia. In addition to these homeostatic mechanisms resisting CD4+ T cell depletion in VNPs, a relative diminution of terminally differentiated effector subset was observed exclusively in these individuals that might ameliorate consequences of high viral replication. VNPs also shared signatures of impaired CD8+ T cell cytotoxic function with progressors evidenced by increased exhaustion (PD-1 upregulation) and CD127 (IL-7Rα) downregulation contributing to persistent viremia. Thus, the homeostatic immune signatures reported in our study suggest a complex multifactorial mechanism accounting for non-progression in VNPs.


Subject(s)
Disease Progression , HIV Long-Term Survivors , HIV Seropositivity/immunology , HIV-1/immunology , Homeostasis/immunology , Adolescent , Adult , CD4 Lymphocyte Count , CD8-Positive T-Lymphocytes/immunology , Female , Genotype , HIV Seropositivity/blood , HIV Seropositivity/virology , HIV-1/genetics , Humans , Interleukin-7/blood , Male , Middle Aged , Receptors, Interleukin-7/metabolism , T-Lymphocytes, Regulatory/immunology , Viral Load , Viremia/immunology , Virus Replication , Young Adult
4.
BMC Infect Dis ; 19(1): 135, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30744575

ABSTRACT

BACKGROUND: HIV-2 infection is characterised by a longer asymptomatic phase and slower AIDS progression than HIV-1 infection. Identifying unique immune signatures associated with HIV-2 pathogenesis may thus provide therapeutically useful insight into the management of HIV infection. This study examined the dynamics of the CD4+T cell compartment, critical in disease progression, focussing on chronic HIV-2 and HIV-1 infected individuals at various stages of disease progression. METHODS: A total of 111 participants including untreated and treated HIV infected individuals and seronegative individuals were enrolled in this study. The relative proportion of CD4+T cell subsets, expressing CD25 (IL-2Rα) and CD127 (IL-7R), in HIV infected individuals and seronegative controls were assessed by multiparametric flow cytometry. Additionally, levels of immune activation and cytotoxic T lymphocytes in both the CD4+T and CD8+T cell compartments was evaluated. RESULTS: Both treated and untreated, HIV-1 and HIV-2 infected individuals showed apparent dysregulation in CD4+ T cell subset frequency that was associated with disease progression. Furthermore, longitudinal sampling from a group of HIV-1 infected individuals on virologically effective ART showed no significant change in dysregulated CD4+T cell subset frequency. For both ART naïve and receiving groups associations with disease progression were strongest and significant with CD4+ T cell subset frequency compared to per cell expression of IL-2Rα and IL-7Rα. In untreated HIV-2 infected individuals, T cell activation was lower compared to ART naïve HIV-1 infected individuals and higher than seronegative individuals. Also, the level of Granzyme-B expressing circulating T cells was higher in both ART-naïve HIV-1 and HIV-2 infected individuals compared to seronegative controls. CONCLUSION: Dysregulation of IL-2 and IL-7 homeostasis persists in CD4+T cell subsets irrespective of presence or absence of viremia or antiretroviral therapy in HIV infection. Furthermore, we report for the first time on levels of circulating Granzyme-B expressing CD4+T and CD8+T cells in chronic HIV-2 infection. Lower immune activation in these individuals indicates that persistent immune activation driven CD4+T cell depletion, as observed in untreated HIV-1 infected individuals, may not be as severe and provides evidence for a disparate pathogenesis mechanism. Our work also supports novel immunomodulatory therapeutic strategies for both HIV-1 and HIV-2 infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV-1/immunology , HIV-2/immunology , Adolescent , Adult , Cohort Studies , Disease Progression , Female , Flow Cytometry , HIV Infections/drug therapy , Humans , Interleukin-2 Receptor alpha Subunit/metabolism , Lymphocyte Activation , Male , Middle Aged , Receptors, Interleukin-7/metabolism , T-Lymphocyte Subsets/immunology , Viremia/immunology , Young Adult
5.
J Biochem Mol Toxicol ; 32(9): e22176, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29992683

ABSTRACT

Anaplastic thyroid carcinoma (ATC) requires more innovative approaches as the current regimes for therapy are inadequate, also most anticancer drugs cause general suppression of physiological functions. However, therapy with limited nontarget tissue damage is desirable. In the present study, we show prooxidant ability of ascorbic acid, which enhances cytotoxicity induced by juglone. We decipher that juglone-ascorbate combination induces reactive oxygen species-mediated apoptosis leading to cell death in ARO cell line originated from ATC. This combination also affects enzyme activity of catalase, glutathione reductase, and superoxide dismutase destabilizing redox balance in cell and thereby making juglone effective at a lower dose. We also show that juglone-ascorbate combination suppresses cell migration, invasion, and expression of tumor-promoting, and angiogenic genes in ARO cell line, thereby disrupting epithelial-mesenchymal transition ability of the cells. Overall, we show that ascorbic acid increases cytotoxic potency of juglone through redox cycling when used in synergy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Ascorbic Acid/pharmacology , Naphthoquinones/pharmacology , Oxidative Stress/drug effects , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Drug Resistance, Neoplasm , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Glutathione/chemistry , Glutathione/metabolism , Humans , Inhibitory Concentration 50 , Neoplasm Invasiveness , Neoplasm Proteins/agonists , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Oxidants/pharmacology , Oxidation-Reduction , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/chemistry , Oxidoreductases/genetics , Oxidoreductases/metabolism , RNA Interference , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology
6.
Bone Marrow Res ; 2018: 3495086, 2018.
Article in English | MEDLINE | ID: mdl-29682352

ABSTRACT

12-14 days of culturing of bone marrow (BM) cells containing various growth factors is widely used method for generating dendritic cells (DCs) from suspended cell population. Here we compared flask culture method and commercially available CD11c Positive Selection kit method. Immature BMDCs' purity of adherent as well as suspended cell population was generated in the decreasing concentration of recombinant-murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF) in nontreated tissue culture flasks. The expression of CD11c, MHCII, CD40, and CD86 was measured by flow cytometry. We found significant difference (P < 0.05) between the two methods in the adherent cells population but no significant difference was observed between the suspended cell populations with respect to CD11c+ count. However, CD11c+ was significantly higher in both adhered and suspended cell population by culture method but kit method gave more CD11c+ from suspended cells population only. On the other hand, using both methods, immature DC expressed moderate level of MHC class II molecules as well as low levels of CD40 and CD86. Our findings suggest that widely used culture method gives the best results in terms of yield, viability, and purity of BMDCs from both adherent and suspended cell population whereas kit method works well for suspended cell population.

SELECTION OF CITATIONS
SEARCH DETAIL
...