Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 162(2): 428-40, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20880025

ABSTRACT

BACKGROUND AND PURPOSE: Cannabinoid CB2 receptor activation by selective agonists has been shown to produce analgesic effects in preclinical models of inflammatory and neuropathic pain. However, mechanisms underlying CB2-mediated analgesic effects remain largely unknown. The present study was conducted to elucidate the CB2 receptor expression in 'pain relevant' tissues and the potential sites of action of CB2 agonism in rats. EXPERIMENTAL APPROACH: Expression of cannabinoid receptor mRNA was evaluated by quantitative RT-PCR in dorsal root ganglia (DRGs), spinal cords, paws and several brain regions of sham, chronic inflammatory pain (CFA) and neuropathic pain (spinal nerve ligation, SNL) rats. The sites of CB2 mediated antinociception were evaluated in vivo following intra-DRG, intrathecal (i.t.) or intraplantar (i.paw) administration of potent CB2-selective agonists A-836339 and AM1241. KEY RESULTS: CB2 receptor gene expression was significantly up-regulated in DRGs (SNL and CFA), spinal cords (SNL) or paws (CFA) ipsilateral to injury under inflammatory and neuropathic pain conditions. Systemic A-836339 and AM1241 produced dose-dependent efficacy in both inflammatory and neuropathic pain models. Local administration of CB2 agonists also produced significant analgesic effects in SNL (intra-DRG and i.t.) and CFA (intra-DRG) pain models. In contrast to A-836339, i.paw administration of AM-1241 dose-relatedly reversed the CFA-induced thermal hyperalgesia, suggesting that different mechanisms may be contributing to its in vivo properties. CONCLUSIONS AND IMPLICATIONS: These results demonstrate that both DRG and spinal cord are important sites contributing to CB2 receptor-mediated analgesia and that the changes in CB2 receptor expression play a crucial role for the sites of action in regulating pain perception.


Subject(s)
Analgesics/pharmacology , Neuralgia/drug therapy , Pain/drug therapy , Receptor, Cannabinoid, CB2/metabolism , Analgesia , Analgesics/therapeutic use , Animals , Brain/drug effects , Brain/metabolism , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Disease Models, Animal , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Male , Neuralgia/chemically induced , Opioid Peptides/metabolism , Pain/metabolism , Pain Perception , RNA, Messenger/analysis , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB2/agonists , Spinal Cord/drug effects , Spinal Cord/metabolism , Thiazoles/pharmacology , Thiazoles/therapeutic use
2.
Brain Res ; 1354: 74-84, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20682302

ABSTRACT

The histamine H(3) receptor is predominantly expressed in the central nervous system and plays a role in diverse physiological mechanisms. In the present study, the effects of GSK189254, a potent and selective H(3) antagonist, were characterized in preclinical pain models in rats. Systemic GSK189254 produced dose-dependent efficacy (ED(50)=0.77 mg/kg i.p.) in a rat model of monoiodoacetate (MIA) induced osteoarthritic (OA) pain as evaluated by hindlimb grip force. The role of H(3) receptors in regulating pain perception was further demonstrated using other structurally distinct H(3) antagonists. GSK189254 also displayed efficacy in a rat surrogate model indicative of central sensitization, namely phase 2 response of formalin-induced flinching, and attenuated tactile allodynia in the spinal nerve ligation model of neuropathic pain (ED(50)=1.5mg/kg i.p.). In addition, GSK189254 reversed persistent (CFA) (ED(50)=2.1mg/kg i.p,), whereas was ineffective in acute (carrageenan) inflammatory pain. When administered intrathecally (i.t.) to the lumbar spinal cord, GSK189254 produced robust effects in relieving the OA pain (ED(50)=0.0027 mg/kg i.t.). The systemic GSK189254 effect was completely reversed by the alpha-adrenergic receptor antagonist phentolamine (i.p. and i.t.) but not by the opioid receptor antagonist naloxone (i.p.). Furthermore, the i.t. GSK189254 effect was abolished when co-administered with phentolamine (i.t.). These results suggest that the spinal cord is an important site of action for H(3) antagonism and the effect can be associated with activation of the noradrenergic system. Our data also provide support that selective H(3) antagonists may represent a class of agents for the treatment of pain disorders.


Subject(s)
Histamine H3 Antagonists/pharmacology , Neurons/drug effects , Norepinephrine/metabolism , Pain Measurement/drug effects , Pain/drug therapy , Receptors, Histamine H3/metabolism , Adrenergic alpha-Antagonists/pharmacology , Analysis of Variance , Animals , Benzazepines/pharmacology , Dose-Response Relationship, Drug , Formaldehyde , Hand Strength , Injections, Spinal , Male , Motor Activity/drug effects , Neurons/metabolism , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Pain/chemically induced , Pain/metabolism , Pain Perception/drug effects , Phentolamine/pharmacology , Rats , Rats, Sprague-Dawley
3.
Pharmacol Biochem Behav ; 95(1): 41-50, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20004681

ABSTRACT

The histamine H(4) receptor (H(4)R) is expressed primarily on cells involved in inflammation and immune responses. To determine the potential role of H(4)R in pain transmission, the effects of JNJ7777120, a potent and selective H(4) antagonist, were characterized in preclinical pain models. Administration of JNJ7777120 fully blocked neutrophil influx observed in a mouse zymosan-induced peritonitis model (ED(50)=17 mg/kg s.c., 95% CI=8.5-26) in a mast cell-dependent manner. JNJ7777120 potently reversed thermal hyperalgesia observed following intraplantar carrageenan injection of acute inflammatory pain (ED(50)=22 mg/kg i.p., 95% CI=10-35) in rats and significantly decreased the myeloperoxide activity in the carrageenan-injected paw. In contrast, no effects were produced by either H(1)R antagonist diphenhydramine, H(2)R antagonists ranitidine, or H(3)R antagonist ABT-239. JNJ7777120 also exhibited robust anti-nociceptive activity in persistent inflammatory (CFA) pain with an ED(50) of 29 mg/kg i.p. (95% CI=19-40) and effectively reversed monoiodoacetate (MIA)-induced osteoarthritic joint pain. This compound also produced dose-dependent anti-allodynic effects in the spinal nerve ligation (ED(50)=60 mg/kg) and sciatic nerve constriction injury (ED(50)=88 mg/kg) models of chronic neuropathic pain, as well as in a skin-incision model of acute post-operative pain (ED(50)=68 mg/kg). In addition, the analgesic effects of JNJ7777120 were maintained following repeated administration and were evident at the doses that did not cause neurologic deficits in rotarod test. Our results demonstrate that selective blockade of H(4) receptors in vivo produces significant anti-nociception in animal models of inflammatory and neuropathic pain.


Subject(s)
Analgesics/pharmacology , Disease Models, Animal , Inflammation/drug therapy , Peripheral Nervous System Diseases/drug therapy , Receptors, G-Protein-Coupled/antagonists & inhibitors , Analgesics/therapeutic use , Animals , Male , Mice , Mice, Inbred BALB C , Radioligand Assay , Rats , Receptors, Histamine , Receptors, Histamine H4
4.
J Pharmacol Exp Ther ; 328(1): 141-51, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18931146

ABSTRACT

Studies demonstrating the antihyperalgesic and antiallodynic effects of cannabinoid CB(2) receptor activation have been largely derived from the use of receptor-selective ligands. Here, we report the identification of A-836339 [2,2,3,3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide], a potent and selective CB(2) agonist as characterized in in vitro pharmacological assays and in in vivo models of pain and central nervous system (CNS) behavior models. In radioligand binding assays, A-836339 displays high affinities at CB(2) receptors and selectivity over CB(1) receptors in both human and rat. Likewise, A-836339 exhibits high potencies at CB(2) and selectivity over CB(1) receptors in recombinant fluorescence imaging plate reader and cyclase functional assays. In addition A-836339 exhibits a profile devoid of significant affinity at other G-protein-coupled receptors and ion channels. A-836339 was characterized extensively in various animal pain models. In the complete Freund's adjuvant model of inflammatory pain, A-836339 exhibits a potent CB(2) receptor-mediated antihyperalgesic effect that is independent of CB(1) or mu-opioid receptors. A-836339 has also demonstrated efficacies in the chronic constrain injury (CCI) model of neuropathic pain, skin incision, and capsaicin-induced secondary mechanical hyperalgesia models. Furthermore, no tolerance was developed in the CCI model after subchronic treatment with A-836339 for 5 days. In assessing CNS effects, A-836339 exhibited a CB(1) receptor-mediated decrease of spontaneous locomotor activities at a higher dose, a finding consistent with the CNS activation pattern observed by pharmacological magnetic resonance imaging. These data demonstrate that A-836339 is a useful tool for use of studying CB(2) receptor pharmacology and for investigation of the role of CB(2) receptor modulation for treatment of pain in preclinical animal models.


Subject(s)
Amides/pharmacology , Cyclopropanes/pharmacology , Inflammation/physiopathology , Pain/physiopathology , Receptor, Cannabinoid, CB1/physiology , Receptor, Cannabinoid, CB2/physiology , Animals , CHO Cells , Cell Line , Cricetinae , Cricetulus , Dermatologic Surgical Procedures , Hindlimb , Humans , Hyperalgesia/physiopathology , Kidney/embryology , Magnetic Resonance Imaging/methods , Male , Pain, Postoperative/physiopathology , Psychomotor Performance/drug effects , Psychomotor Performance/physiology , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB2/agonists
5.
Pharmacology ; 70(2): 100-6, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14685013

ABSTRACT

This study in non-human primates was designed to evaluate the bleeding propensity of a selective, small molecule inhibitor of tissue factor (TF)/VIIa in combination with acetylsalicylic acid (ASA) in comparison to the combination of ASA and warfarin. Bleeding time was increased by ASA but was not prolonged further by the addition of the TF/VIIa inhibitor, PHA-927, at doses that elevated the prothrombin time to 8-fold. In contrast, bleeding time was prolonged by warfarin alone and further exacerbated by the presence of ASA. Acute blood loss at the bleeding site, while not significantly increased by either warfarin or PHA-927, was increased substantially in several individuals treated with a combination of warfarin and ASA but not by the combination of TF/VIIa inhibitor and ASA. These data predict that TF/VIIa inhibition, in the presence of chronic aspirin therapy in patients with cardiovascular risk factors, will be a safe therapy for thrombotic disorders.


Subject(s)
Aminobenzoates/pharmacology , Anticoagulants/pharmacology , Aspirin/pharmacology , Factor VIIa/antagonists & inhibitors , Platelet Aggregation Inhibitors/pharmacology , Pyrazines/pharmacology , Thromboplastin/antagonists & inhibitors , Warfarin/pharmacology , Animals , Bleeding Time , Dose-Response Relationship, Drug , Drug Combinations , Hemorrhage/blood , Macaca fascicularis , Male , Prothrombin Time , Whole Blood Coagulation Time
6.
J Pharmacol Exp Ther ; 306(3): 1115-21, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12829728

ABSTRACT

This study was designed to evaluate the antithrombotic efficacy and bleeding propensity of a selective, small-molecule inhibitor of tissue factor/factor VIIa (TF/VIIa) in comparison to small-molecule, selective inhibitors of factor Xa and thrombin in a nonhuman primate model of thrombosis. Acute, spontaneous thrombus formation was induced by electrolytic injury to the intimal surface of a femoral blood vessel, which results in thrombus propagation at the injured site. The TF/FVIIa inhibitor 3-amino-5-[1-[2-([4-[amino(imino)methyl]benzyl]amino)-2-oxoethyl]-3-chloro-5-(isopropylamino)-6-oxo-1,6-dihydropyrazin-2-yl]benzoic acid dihydrochloride (PHA-927F) was fully effective in prevention of thrombosis-induced vessel occlusion at a dose of 400 microg/kg/min, i.v., in the arterial vasculature (femoral artery). Neither the effective dose nor multiples up to 4.4-fold the effective arterial plasma concentration elicited any significant effect on bleeding time or blood loss from either the bleeding time site or the surgical (femoral isolation) site. Small-molecule inhibitors of factor Xa or thrombin were effective arterial antithrombotic agents; however, in contrast to the TF/FVIIa inhibitor, they both elicited substantial increases in bleeding propensity at the effective dose and at multiples of the effective plasma concentration. These data indicate that TF/VIIa inhibition effectively prevented arterial thrombosis with less impact on bleeding parameters than equivalent doses of factor Xa and thrombin inhibitors.


Subject(s)
Aminobenzoates/therapeutic use , Factor VIIa/antagonists & inhibitors , Factor Xa Inhibitors , Fibrinolytic Agents/therapeutic use , Pyrazines/therapeutic use , Thrombosis/drug therapy , Animals , Bleeding Time , Dose-Response Relationship, Drug , Forearm/physiology , Hemodynamics/drug effects , Macaca fascicularis , Male , Prothrombin Time , Sodium Chloride , Thrombin/antagonists & inhibitors , Thromboplastin/antagonists & inhibitors
7.
Thromb Res ; 112(3): 167-74, 2003.
Article in English | MEDLINE | ID: mdl-14967414

ABSTRACT

INTRODUCTION: Pharmacological treatment of deep vein thrombosis (DVT) in the future may target inhibitors of specific procoagulant proteins. This study used a non-human primate model to test the effect of PHA-798, a specific inhibitor of the tissue factor/Factor VIIa complex (TF/VIIa), on venous thrombus formation. MATERIALS AND METHODS: PHA inhibits the TF/VIIa complex with an IC(50) of 13.5 nM (K(i) 9 nM) and is more than 2000-fold selective for the TF/VIIa complex with respect to IC(50)s for factor Xa and thrombin. In the model, a thrombogenic surface was introduced into the vena cava of a primate, and the amount of thrombus accumulated after 30 min was determined. RESULTS: PHA-798 reduced thrombus formation on the thrombogenic surface in a dose-dependent manner (56+/-1.9% and 85+/-0.3% inhibition with 100 and 200 microg/kg/min PHA-798, respectively) indicating that the model is sensitive to TF/VIIa inhibition. Treatment with 1 mg/kg intravenous (IV) acetyl salicylic acid (ASA) resulted in only a slight (4-12%), non-significant inhibition of thrombus formation. However, the combination of 100 microg/kg/min PHA-798 and 1 mg/kg ASA resulted in an 89% inhibition of thrombus formation. Additionally, while ASA alone increased bleeding time (BT) from 3.3 min at baseline to 4.6 min following treatment, addition of PHA-798 (100 microg/kg/min) to ASA did not significantly increase the BT further (4.7 min). CONCLUSIONS: The results of this study indicate that inhibition of TF/VIIa may be safe and effective for the prevention of the proprogation of venous thrombosis and that the combination of ASA and PHA may provide increased efficacy with little change in safety.


Subject(s)
Factor VIIa/antagonists & inhibitors , Thromboplastin/antagonists & inhibitors , Thrombosis/physiopathology , Animals , Aspirin/toxicity , Bleeding Time , Body Weight , Disease Models, Animal , Macaca fascicularis , Male , Platelet Aggregation Inhibitors/toxicity , Thrombosis/blood , Thrombosis/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...