Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38400322

ABSTRACT

Nowadays climate change is affecting the planet's biodiversity, and livestock practices must adapt themselves to improve production without affecting animal welfare. This work investigates the influence that some climatic parameters such as Environment Temperature, Relative Humidity, Thermal excursion and Temperature-Humidity Index (THI), can have on milk quantity and quality in two different dairy species (buffaloes and cows) raised on the same farm. A further aim was to understand if THI threshold used for cows could also be used for buffaloes. The climatic parameters were recorded daily through a meteorological station located inside the farm. Milk quantity (converted into ECM) and quality (Fat Percentage-FP; Protein Percentage-PP; Somatic Cell Count-SCC) were measured. Data were analyzed with Spearman's correlation index, separately for buffaloes and cows. The results indicate a greater sensitivity of cows to heat stress and a strong negative correlation of the ECM with meteorological data (p < 0.01). The results of this study may stimulate the use of integrated technologies (sensors, software) in the dairy sector, since the IoT (sensors, software) helps to enhance animal well-being and to optimize process costs, with a precision livestock farming approach.


Subject(s)
Buffaloes , Heat Stress Disorders , Animals , Female , Cattle , Livestock , Hot Temperature , Lactation , Humidity , Milk/metabolism
2.
Cell Commun Signal ; 21(1): 245, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37730576

ABSTRACT

BACKGROUND: Several studies show that natural foods are a source of compounds with anticancer properties that affect the gut microbiota and its metabolites. In the present study, we investigate the effect of a delactosed buffalo milk whey by-product (DMW) on colorectal carcinogenesis. METHODS: The effect of DMW on colorectal carcinoma (CRC) was investigated in the established mouse model of azoxymethane (AOM)-induced colon carcinoma, which closely resembles the human clinical condition of CRC. The effect of DMW on CRC immortalized cell lines was also evaluated to further identify the antineoplastic mechanism of action. RESULTS: Pretreatment of AOM-treated mice with DMW significantly (P < 0.05) reduced the percentage of mice bearing both aberrant crypt foci with more than four crypts (which are early precancerous lesions that progress to CRC) and tumors. In addition, DMW completely counteracted the effect of AOM on protein expression of caspase-9, cleaved caspase-3 and poly ADP-ribose polymerase in colonic tissue. Administration of DMW alone (i.e. without AOM) resulted in changes in the composition of the gut microbiota, leading to enrichment or depletion of genera associated with health and disease, respectively. DMW was also able to restore AOM-induced changes in specific genera of the gut microbiota. Specifically, DMW reduced the genera Atopobiaceae, Ruminococcus 1 and Lachnospiraceae XPB1014 and increased the genera Parabacteroides and Candidatus Saccharimonas, which were increased and reduced, respectively, by AOM. Blood levels of butyric acid and cancer diagnostic markers (5-methylcytidine and glycerophosphocholine), which were increased by AOM treatment, were reduced by DMW. Furthermore, DMW exerted cytotoxic effects on two human CRC cell lines (HCT116 and HT29) and these effects were associated with the induction of apoptotic signaling. CONCLUSIONS: Our results suggest that DMW exerts chemopreventive effects and restores the gut microbiota in AOM-induced CRC, and induces cytotoxic effect on CRC cells. DMW could be an important dietary supplement to support a healthy gut microbiota and reduce the prevalence of CRC in humans. Video Abstract.


Subject(s)
Colorectal Neoplasms , Whey , Humans , Animals , Mice , Buffaloes , Milk , Carcinogenesis , Colorectal Neoplasms/drug therapy , Azoxymethane/toxicity , Butyric Acid
3.
Stud Health Technol Inform ; 302: 895-896, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37203526

ABSTRACT

The present work aims at describing a viable "protocol" for unobtrusive direct/indirect monitoring of biometric parameters for the estimation of body conditions on Mediterranean Buffalo populations, using low-cost automated systems i.e., smart cameras endowed with depth perception capabilities.


Subject(s)
Buffaloes , Digital Technology , Animals , Italy
4.
Vet Anim Sci ; 21: 100298, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37252208

ABSTRACT

This study evaluated the effects of supplementing with natural functional feed on the plasma fatty acid profile of lactating Italian Holstein-Friesian dairy cows. Thirty cows in mid-lactation received the natural olive extract PHENOFEED DRY (500 mg/cow/day) which mainly comprises hydroxytyrosol, tyrosol and verbascoside. The total content of polyphenols and the antioxidant power of standard feed, enriched feed and pure extract was evaluated respectively by Folin-Ciocalteu and DPPH assay, and a characterization in HPLC-UV (High-Performance Liquid Chromatography-Ultraviolet) of bioactive molecules present in the extract PHENOFEED DRY was performed. PHENOFEED DRY was provided for 60 days, and the plasma profile of fatty acids was determined by Gas Chromatography. The administration of enriched feed resulted in an increase in the ratio of Omega-6 to Omega-3 polyunsaturated fatty acids from 3:1 to 4:1 (p<0.001). This was not influenced by the calving order. The addition of polyphenols helped to keep monounsaturated (MUFA) and saturated (SFA) levels constant and results in a significant increase in polyunsaturated (PUFA) fatty acid after 15 days of administration. The Omega-6/Omega-3 ratio was in the optimal range. The findings show that inclusion of natural functional food such as plant polyphenols helps to maintain a healthy blood fatty acid profile in lactating dairy cows.

5.
J Anim Physiol Anim Nutr (Berl) ; 107(6): 1347-1355, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37195024

ABSTRACT

A feeding strategy that maintains high content of functional molecules in buffalo milk has been verified by giving Sorghum vulgare as green fodder, but it is not available all year round. The aim of this study was to evaluate the inclusion of former food products (FFPs) containing 87% biscuit meal (nonstructural carbohydrate: 60.1%; starch 14.7; crude protein 10.6), in the diet of buffaloes in terms of: (a) fermentation characteristics through gas production technique; (b) milk yield (MY) and quality; (c) content of some biomolecules and total antioxidant activity. The experiment was performed involving 50 buffaloes divided into two groups: Green group and FFPs group (animals fed Total Mixed Ration with either green forage or FFPs respectively). Daily MY was recorded and milk qualitative analyses were determined monthly for 90 days. Furthermore, fermentation characteristics of the diets were studied in vitro. No significant differences were recorded in feed intake, BCS and MY and quality. Similar in vitro fermentation data of two diets were found, with slight differences in terms of gas production and degradability. During the incubation, kinetic parameters showed a faster fermentation process with the diet of the FFPs group in relation to Green group (p < 0.05). Green group had higher levels (p < 0.01) of γ-butyrobetaine, glycine betaine, l-carnitine and propionyl l-carnitine in milk, whereas no differences were observed for δ-valerobetaine and acetyl l-carnitine. Total antioxidant capacity and iron reduction antioxidant assay were higher (p < 0.05) in the plasma and milk of the Green group. The administration of a diet high in simple sugars, obtained with FFPs, seems to favour the ruminal biosynthesis of some metabolites in milk, such as δ-valerobetaine and acetyl- l-carnitine, similar to green forage administration. Overall, the use of biscuit meal can be an alternative to green fodder when it is not available to ensure environmental sustainability and optimize costs without compromising milk quality.


Subject(s)
Buffaloes , Lactation , Female , Animals , Antioxidants/metabolism , Digestion , Milk/chemistry , Diet/veterinary , Animal Feed/analysis , Carnitine/metabolism , Rumen/metabolism , Fermentation
6.
BMC Genomics ; 24(1): 133, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36941576

ABSTRACT

BACKGROUND: Green feed diet in ruminants exerts a beneficial effect on rumen metabolism and enhances the content of milk nutraceutical quality. At present, a comprehensive analysis focused on the identification of genes, and therefore, biological processes modulated by the green feed in buffalo rumen has never been reported. We performed RNA-sequencing in the rumen of buffaloes fed a total mixed ration (TMR) + the inclusion of 30% of ryegrass green feed (treated) or TMR (control), and identified differentially expressed genes (DEGs) using EdgeR and NOISeq tools. RESULTS: We found 155 DEGs using EdgeR (p-values < 0.05) and 61 DEGs using NOISeq (prob ≥0.8), 30 of which are shared. The rt-qPCR validation suggested a higher reliability of EdgeR results as compared with NOISeq data, in our biological context. Gene Ontology analysis of DEGs identified using EdgeR revealed that green feed modulates biological processes relevant for the rumen physiology and, then, health and well-being of buffaloes, such as lipid metabolism, response to the oxidative stress, immune response, and muscle structure and function. Accordingly, we found: (i) up-regulation of HSD17B13, LOC102410803 (or PSAT1) and HYKK, and down-regulation of CDO1, SELENBP1 and PEMT, encoding factors involved in energy, lipid and amino acid metabolism; (ii) enhanced expression of SIM2 and TRIM14, whose products are implicated in the immune response and defense against infections, and reduced expression of LOC112585166 (or SAAL1), ROR2, SMOC2, and S100A11, encoding pro-inflammatory factors; (iii) up-regulation of NUDT18, DNAJA4 and HSF4, whose products counteract stressful conditions, and down-regulation of LOC102396388 (or UGT1A9) and LOC102413340 (or MRP4/ABCC4), encoding detoxifying factors; (iv) increased expression of KCNK10, CACNG4, and ATP2B4, encoding proteins modulating Ca2+ homeostasis, and reduced expression of the cytoskeleton-related MYH11 and DES. CONCLUSION: Although statistically unpowered, this study suggests that green feed modulates the expression of genes involved in biological processes relevant for rumen functionality and physiology, and thus, for welfare and quality production in Italian Mediterranean dairy buffaloes. These findings, that need to be further confirmed through the validation of additional DEGs, allow to speculate a role of green feed in the production of nutraceutical molecules, whose levels might be enhanced also in milk.


Subject(s)
Buffaloes , Transcriptome , Animals , Female , Buffaloes/genetics , Animal Feed/analysis , Reproducibility of Results , Diet/veterinary , Milk/metabolism , Rumen/metabolism , Lactation , Fermentation
7.
Foods ; 12(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36766061

ABSTRACT

Wet-aging (WA) and dry-aging (DA) methods are usually used in the beef industry to satisfy the consumers' tastes; however, these methods are not suitable for all anatomical cuts. In this study, WA and DA were applied to improve the quality of two cuts of Charolais beef (Longissimus dorsi and Semitendinosus). For 60 days (i.e., 2 days, 15 days, 30 days and 60 days of sampling), a physicochemical, rheological, and microbiological analysis were performed at WA (vacuum packed; temperature of 4 ± 1 °C) and at DA (air velocity of 0.5 m/s; temperature of 1 ± 1 °C; relative humidity of 78 ± 10%) conditions. The results showed that the aging method influenced the aging loss (higher in the DA), cooking loss (higher in the WA), malondialdehyde concentration (higher in the DA) and fatty acid profile (few changes). No differences in the drip loss and color were observed, which decreased after 30 days of aging. The WBSF and TPA test values changed with increasing an aging time showing that the aging improved the tenderness of meat regardless of the aging method. Moreover, the aging method does not influence the microbiological profile. In conclusion, both WA and DA enhanced the quality of the different beef cuts, suggesting that an optimal method-time and aging combination could be pursued to reach the consumers' preferences.

8.
Vet Sci ; 9(11)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36356093

ABSTRACT

Primiparous buffaloes were tested in two periods of the year characterized, by either low or high reproductive efficiency. They were subjected to two protocols for synchronization of ovulation: (i) Ovsynch (OV) and (ii) progesterone based (P4) treatment. After calving, the animals underwent a series of four cycles of re-synchronization protocols. The season did not affect pregnancy rates when the results of the two treatments were pooled together with regard to the first synchronization protocol, followed by AI. Pregnancy rates were similar during the low breeding season (50.3% vs. 57.4% in OV and P4, respectively), but different during the high breeding season (50.4% vs. 67.7% in OV and P4, respectively; p = 0.000). Logistic regression confirmed a significant effect of treatment and season interaction on pregnancy (p = 0.003). Following re-synchronization, a treatment by season interaction was detected during the low breeding season (odds ratio = 2.233), in favor of P4. Finally, a survival analysis showed a better response of animals subjected to P4 treatment from the second AI onward. In conclusion, the pooled data of pregnancy rates from both treatments between seasons are not different following AIs. Better results, though, were obtained from the implementation of P4 treatment, and are recorded in a season-fashioned mode when the comparison is made following first or cumulative AIs.

9.
Int J Mol Sci ; 23(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36232386

ABSTRACT

In the present study, we aimed at assessing the influence of breed and feeding system on the bovine milk profile of betaines and carnitines and milk capacity in counteracting the inflammatory endothelial cell (EC) damage induced by interleukin (IL)-6. In the first experimental design, two breeds were chosen (Holstein vs. Modicana) to investigate the biomolecule content and antioxidant capacity in milk and dairy products. In the second experimental design, two feeding systems (pasture vs. total mixed ratio) were tested only in Holstein to evaluate the possible effect on the functional profile of milk and dairy products. Finally, the bulk milk from the two experimental designs was used to evaluate the efficacy of preventing IL-6-induced endothelial inflammatory damage. Results showed that Modicana milk and whey had higher biomolecule content and antioxidant activity compared to Holstein milk (p < 0.01). Milk from Holstein fed TMR showed higher concentration of γ-butyrobetaine, δ-valerobetaine (p < 0.01), and l-carnitine (p < 0.05). Similarly, whey from Holstein fed TMR also showed higher content of δ-valerobetaine, glycine betaine, l-carnitine, and acetyl-l-carnitine (p < 0.01) compared to the Holstein fed pasture. Conversely, the antioxidant activity of milk and dairy products was not affected by the feeding system. In ECs, all milk samples reduced the IL-6-induced cytokine release, as well as the accumulation of reactive oxygen species (ROS) and the induction of cell death, with the most robust effect elicited by Modicana milk (p < 0.01). Overall, Modicana milk showed a higher content of biomolecules and antioxidant activity compared to Holstein, suggesting that the breed, more than the feeding system, can positively affect the health-promoting profile of dairy cattle milk.


Subject(s)
Antioxidants , Milk , Acetylcarnitine/metabolism , Animal Feed , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Betaine/metabolism , Carnitine/metabolism , Cattle , Diet , Female , Interleukin-6/metabolism , Lactation/physiology , Milk/metabolism , Reactive Oxygen Species/metabolism , Whey Proteins/metabolism
10.
Animals (Basel) ; 12(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077945

ABSTRACT

The measurement of milk electrical conductivity (EC) is a relatively simple and inexpensive technique that has been evaluated as a routine method for the diagnosis of mastitis in dairy farms. The aim of this study was to obtain further knowledge on relationships between EC, production traits and somatic cell count (SCC) in Italian Mediterranean Buffalo. The original dataset included 5411 records collected from 808 buffalo cows. Two mixed models were used to evaluate both the effect of EC on MY, PP and FP and EC at test-day, and the effect of EC on somatic cell score (SCS) by using five different parameters (EC_param), namely: EC collected at the official milk recording test day (EC_day0), EC collected 3 days before official milk recording (EC_day3), and three statistics calculated from EC collected 1, 3 and 5 days before each test-day, respectively. All effects included in the model were significant for all traits, with the only exception of the effect of EC nested within parity for FP. The relationship between EC and SCS was always positive, but of different magnitude according to the parity. The regression of EC on SCS at test-day using different EC parameters was always significant except when the regression parameter was the slope obtained from a linear regression of EC collected over the 5-day period. Moreover, in order to evaluate how well the different models fit the data, three parameters were used: the Average Information Criteria (AIC), the marginal R2 and the conditional R2. According to AIC and to both the Marginal and Conditional R2, the best results were obtained when the regression parameter was the mean EC estimated over the 5-day period.

11.
Genes (Basel) ; 13(8)2022 08 11.
Article in English | MEDLINE | ID: mdl-36011341

ABSTRACT

Background: The 90K Axiom Buffalo SNP Array is expected to improve and speed up various genomic analyses for the buffalo (Bubalus bubalis). Genomic prediction is an effective approach in animal breeding to improve selection and reduce costs. As buffalo genome research is lagging behind that of the cow and production records are also limited, genomic prediction performance will be relatively poor. To improve the genomic prediction in buffalo, we introduced a new approach (pGBLUP) for genomic prediction of six buffalo milk traits by incorporating QTL information from the cattle milk traits in order to help improve the prediction performance for buffalo. Results: In simulations, the pGBLUP could outperform BayesR and the GBLUP if the prior biological information (i.e., the known causal loci) was appropriate; otherwise, it performed slightly worse than BayesR and equal to or better than the GBLUP. In real data, the heritability of the buffalo genomic region corresponding to the cattle milk trait QTLs was enriched (fold of enrichment > 1) in four buffalo milk traits (FY270, MY270, PY270, and PM) when the EBV was used as the response variable. The DEBV as the response variable yielded more reliable genomic predictions than the traditional EBV, as has been shown by previous research. The performance of the three approaches (GBLUP, BayesR, and pGBLUP) did not vary greatly in this study, probably due to the limited sample size, incomplete prior biological information, and less artificial selection in buffalo. Conclusions: To our knowledge, this study is the first to apply genomic prediction to buffalo by incorporating prior biological information. The genomic prediction of buffalo traits can be further improved with a larger sample size, higher-density SNP chips, and more precise prior biological information.


Subject(s)
Milk , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Female , Genomics , Phenotype , Quantitative Trait Loci
12.
Int J Mol Sci ; 23(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35955595

ABSTRACT

Recent pharmacological research on milk whey, a byproduct of the dairy industry, has identified several therapeutic properties that could be exploited in modern medicine. In the present study, we investigated the anticancer effects of whey from Mediterranean buffalo (Bubalus bubalis) milk. The antitumour effect of delactosed milk whey (DMW) was evaluated using the HCT116 xenograft mouse model of colorectal cancer (CRC). There were no discernible differences in tumour growth between treated and untreated groups. Nevertheless, haematoxylin and eosin staining of the xenograft tissues showed clearer signs of different cell death in DMW-treated mice compared to vehicle-treated mice. Detailed biochemical and molecular biological analyses revealed that DMW was able to downregulate the protein expression levels of c-myc, phospho-Histone H3 (ser 10) and p-ERK. Moreover, DMW also activated RIPK1, RIPK3, and MLKL axis in tumour tissues from xenograft mice, thus, suggesting a necroptotic effect. The necroptotic pathway was accompanied by activation of the apoptotic pathway as revealed by increased expression of both cleaved caspase-3 and PARP-1. At the molecular level, DMW-induced cell death was also associated with (i) upregulation of SIRT3, SIRT6, and PPAR-γ and (ii) downregulation of LDHA and PPAR-α. Overall, our results unveil the potential of whey as a source of biomolecules of food origin in the clinical setting of novel strategies for the treatment of CRC.


Subject(s)
Colorectal Neoplasms , Sirtuins , Animals , Apoptosis , Buffaloes/metabolism , Heterografts , Humans , Mice , Milk/chemistry , Necroptosis , Peroxisome Proliferator-Activated Receptors/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Sirtuins/metabolism , Whey/metabolism
13.
Animals (Basel) ; 11(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34827897

ABSTRACT

The aim of this study was to evaluate the efficacy of a progesterone-based treatment on anoestrus in buffaloes. Primiparous acyclic buffaloes (n = 276), were divided into three classes according to their days in milk (DIM): from 50 to 90 (Class I; n = 86), from 91 to 150 (Class II; n = 102) and from 150 to 200 (Class III; n = 88). Animals were synchronized using P4 vaginal implants, followed by timed artificial insemination (TAI). They were then allowed to enter into a larger group of buffaloes for natural mating 15 days after AI was performed, and pregnancy status was monitored from then on at 15-day intervals. Finally, the temperature-humidity index (THI) was calculated. Statistical analysis was performed by ANOVA by means and both multiple and linear regression. The total pregnancy rate (PR) was 87.7%, with no differences among DIM classes (88.0, 92.4, and 80.0% in Classes I, II, and III, respectively). However, the PR at TAI tended to be higher (p = 0.07) in buffaloes in Class II. The follicle (FL) area in Class II buffaloes was larger (p < 0.01) than that of the other classes. No influence of the THI on the total PR was recorded. The pregnancy outcome at TAI was affected by the FL area (odds ratio = 2.237; p < 0.05) and body condition score (BCS) (odds ratio = 1.256; p < 0.05). In conclusion, treatment with vaginal P4 optimizes pregnancy rates in anoestrus buffaloes, particularly when the animals are in mid-lactation and show an optimal BCS. Furthermore, the THI does not seem to affect the efficiency of the progesterone treatment.

14.
Vet Sci ; 8(6)2021 May 31.
Article in English | MEDLINE | ID: mdl-34073108

ABSTRACT

The microbiota of the gastrointestinal tract (GIT) are crucial for host health and production efficiency in ruminants. Its microbial composition can be influenced by several endogenous and exogenous factors. In the beef and dairy industry, the possibility to manipulate gut microbiota by diet and management can have important health and economic implications. The aims of this study were to characterize the different GIT site microbiota in water buffalo and evaluate the influence of diet on GIT microbiota in this animal species. We characterized and compared the microbiota of the rumen, large intestine and feces of water buffaloes fed two different diets with different non-structural carbohydrates/crude proteins (NSC/CP) ratios. Our results indicated that Bacteroidetes, Firmicutes and Proteobacteria were the most abundant phyla in all the GIT sites, with significant differences in microbiota composition between body sites both within and between groups. This result was particularly evident in the large intestine, where beta diversity analysis displayed clear clustering of samples depending on the diet. Moreover, we found a difference in diet digestibility linked to microbiota modification at the GIT level conditioned by NSC/CP levels. Diet strongly influences GIT microbiota and can therefore modulate specific GIT microorganisms able to affect the health status and performance efficiency of adult animals.

15.
Animals (Basel) ; 11(3)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805805

ABSTRACT

This study evaluates the animal performance and meat characteristics of 60 Saanen suckling kids daily fed a red orange and lemon extract (RLE), rich in anthocyanins. In our methodology, after colostrum administration, animals are randomly assigned to two treatments: Treatment group (Group RLE; n = 30) that received RLE (90 mg/kg live body weight) as oral food additive, and a control group (Group CON; n = 30) that received a standard diet. Animals are slaughtered after 40 days. The RLE administration did not influence daily weight gain, carcass measurements, or incidences (expressed as a percentage) of different anatomical regions on the whole carcass weight. On the contrary, RLE supplementation significantly improved the oxidative profile of the meat seven days after slaughtering, as demonstrated by the reduced levels of thiobarbituric acid reactive substances (TBARS; p < 0.01) and hydroperoxides (p < 0.01) in Group RLE compared to Group CON. A significant influence of RLE administration is observed on day 7 for yellowness (p < 0.01). There are also lower saturated and higher monounsaturated and polyunsaturated fatty acids concentration in Group RLE meat (p < 0.01), which also shows lower atherogenic and thrombogenic indexes (p < 0.01) compared to Group CON. The study demonstrates that the supplementation of a diet with RLE rich in anthocyanins is effective to improve the meat quality.

16.
Biomed Res Int ; 2021: 3653157, 2021.
Article in English | MEDLINE | ID: mdl-33829059

ABSTRACT

PPARGC1A gene plays an important role in the activation of various important hormone receptors and transcriptional factors involved in the regulation of adaptive thermogenesis, gluconeogenesis, fiber-type switching in skeletal muscle, mitochondrial biogenesis, and adipogenesis, regulating the reproduction and proposed as a candidate gene for milk-related traits in cattle. This study identified polymorphisms in the PPARGC1A gene in Italian Mediterranean buffaloes and their associations to milk production and quality traits (lactation length, peak milk yield, fat and protein yield, and percentage). As a result, a total of seven SNPs (g.-78A>G, g.224651G>C, g.286986G>A, g.304050G>A, g.325647G>A, g.325817T>C, and g.325997G>A) were identified by DNA pooled sequencing. Analysis of productivity traits within the genotyped animals revealed that the g.286986G>A located at intron 4 was associated with milk production traits, but the g.325817T>C had no association with milk production. Polymorphisms in g.-78A>G was associated with peak milk yield and milk yield, while g.304050G>A and g.325997 G>A were associated with both milk yield and protein percentage. Our findings suggest that polymorphisms in the buffalo PPARGC1A gene are associated with milk production traits and can be used as a candidate gene for milk traits and marker-assisted selection in the buffalo breeding program.


Subject(s)
Buffaloes/genetics , Genetic Association Studies , Milk/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Animals , Gene Frequency/genetics , Italy
17.
Animals (Basel) ; 11(4)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33918036

ABSTRACT

Goats have important social and economic roles in many countries because of their ability to survive and be productive in marginal areas. The overarching aim of this study was to compare the application of Wood's model to different test-day milk recording protocols for estimation of total milk, fat, and protein yield in dairy goats. A total of 465 goats were used (Garganica, 78; Girgentana, 81; Jonica, 76; Maltese, 77; Red Mediterranean, 76; Saanen, 77). Milk yield was recorded every 15 days throughout lactation of 210 days, for a total of 14 collection days, during both morning and afternoon milking sessions. Milk samples were collected and analyzed for protein and fat. The fat-corrected milk was standardized at 35g fat/kg of milk. Wood models showed high R2 values, and thus good fitting, in all the considered breeds. Wood model applied to first, second, fourth, and sixth month recordings (C) and ICAR estimation showed total milk yield very close to Wood's model applied to all 14 recordings (A) (p > 0.38). Differently, Wood's model applied to the first, second, third, and fourth month recording (B) estimation showed great differences (p < 0.01). This could be applied for farms that had the necessity to synchronize flock groups for kidding in order to produce kid meat. In farms that apply the estrus induction and/or synchronization for kidding, it would be possible to perform only four test-day milk recordings and to apply the Wood's model on them in order to obtain the estimation of total milk, fat, and protein yield during lactation for animals inscribed, or to be inscribed, to the genealogical book.

18.
Vet Sci ; 8(4)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33924054

ABSTRACT

Recently, several concerns have been expressed on red meat quality and consumption. The aims of this study were to evaluate the influence of different breeding techniques and a prolonged post dry aging (PDA) maturation process on biomolecules level in raw buffalo meat. In the first experiment, two groups of animals were maintained with different space availability (15 vs. 10 m2/animal) for 90 days and biomolecules content was evaluated. In experiment 2, two diets (with or without ryegrass green forage) were used to assess the concentration of these biomolecules. Finally, in experiment 3, the meat of the animals that showed the highest content of biomolecules was chosen to assess the influence of the PDA maturation process. Buffaloes reared at 15 m2 showed a significantly (p < 0.05) higher content of the considered biomolecules compared with their counterparts. Similarly, buffaloes fed green forage showed higher content of biomolecules (p < 0.05) compared with the control group. The meat of the animals bred at 15 m2 and fed green forage showed a significant (p < 0.01) increase of biomolecules content during the PDA maturation process up to 60 days without influence microbiological profile in terms of total aerobic bacterial counts, yeasts, and molds. In conclusion, breeding techniques and PDA maturation system could enhance biomolecules levels in terms of quality, without affect health standards.

19.
Animals (Basel) ; 11(2)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572145

ABSTRACT

The use of natural compounds as feed additive is also increasing in farm animals, thanks to the beneficial effect on both animals and consumers health. Here, we questioned whether natural extracts, such as red orange and lemon extract (RLE) rich in flavanones, anthocyanins, and other polyphenols, used as feed additives could display an effect on the neuropeptide Y (NPY) in the gastro-entero-pancreatic tract of goat kids. NPY is one of the most abundant neuropeptides in mammals, known for its orexigenic role although it is involved in many central and peripheral functions. We carried out immunohistochemical analyses on samples of abomasum, duodenum and pancreas collected from two experimental groups: one fed with standard diet and one with standard diet + RLE. For the first time we document NPY distribution in the abomasum, duodenum and pancreas of goats and observe the highest number of NPY positive cells in neuroendocrine cells of duodenum. Remarkably, upon RLE feed supplementation, NPY immunoreactive cells increased significantly in abomasal epithelium and pancreatic islets but not in duodenum, likely due to pH variation of abomasum and duodenum. Our observations represent a baseline for future studies on the interaction between neuropeptides and polyphenols, used as feed additive.

20.
Food Chem ; 344: 128669, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33248845

ABSTRACT

The effect of green feed on health-promoting biomolecules in milk was examined in dairy buffaloes. Buffaloes received a total mixed ration (TMR) (Control, C; n = 40) or TMR + alfalfa green feed (30% of diet) (Treated, T; n = 40). Biomolecules and functional activity were measured in milk obtained twice-monthly. Treated buffaloes had higher milk l-carnitine, acetyl-l-carnitine, propionyl-l-carnitine and δ-valerobetaine (P < 0.01). They also had higher antioxidant activity (P < 0.01). Compared with C buffaloes, milk of T buffaloes improved the viability of endothelial cells exposed to high-glucose (P < 0.01), and reduced intracellular lipid peroxidation, reactive oxygen species (ROS), and cytokine release (P < 0.01). Milk of T buffaloes inhibited with greater potency the viability of human HCT116 and Cal 27 cancer cells (P < 0.001). The findings show that including green feed in the diet of dairy buffaloes enhances health-promoting biomolecules and the antioxidant and antineoplastic properties of milk.


Subject(s)
Animal Feed/analysis , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Buffaloes/metabolism , Livestock , Milk/metabolism , Animals , Female , Lipid Peroxidation/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...