Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Surg Oncol ; 28(13): 8556-8564, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34324109

ABSTRACT

INTRODUCTION: Esophageal adenocarcinoma (EAC) has increased in incidence in Western countries, and its poor prognosis necessitates the development of novel therapeutics. We previously reported the potential of conditionally replicative adenoviruses (CRAd) as a novel therapeutic treatment for this disease. To further augment the therapeutic effectiveness of our cyclooxygenase-2 (Cox2) controlled CRAd in EAC, we inserted an interferon alpha (IFN) transgene into the viral genome that is expressed upon viral replication. In this manuscript, we analyze the cytotoxic and oncolytic effects of an IFN-expressing oncolytic adenovirus in EAC and the role of the Cox2 promoter in providing for selective replication in human tissues. METHODS: An infectivity-enhanced IFN-expressing CRAd (5/3 Cox2 CRAd ΔE3 ADP IFN) and other control viruses were first tested in vitro with cell lines. For the in vivo study, EAC xenografts in nude mice were treated with a single intratumoral dose of virus. An ex vivo analysis with live tissue slices was conducted using surgically resected EAC patient specimens. RESULTS: Expression of IFN significantly enhanced the cytotoxic and oncolytic effect of a Cox2-promoter controlled CRAd. This virus showed significant tumor growth suppression in a xenograft model. Furthermore, in human EAC samples, the promoter-controlled virus demonstrated selective replication in cancerous tissues, leaving normal esophageal tissue unaffected. CONCLUSION: An IFN-expressing CRAd driven by the Cox2 promoter has strong oncolytic effects as well as cancer-specific replication. Our novel vector possesses critical characteristics that make it a potential candidate for clinical translation to treat EAC.


Subject(s)
Adenocarcinoma , Oncolytic Virotherapy , Adenocarcinoma/therapy , Adenoviridae/genetics , Animals , Cell Line, Tumor , Humans , Interferon-alpha , Mice , Mice, Nude
2.
Oncotarget ; 9(26): 18041-18052, 2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29719589

ABSTRACT

Recent clinical trials utilizing Interferon-alpha (IFN) in combination with chemoradiation have demonstrated significant improvements in the survival of patients with pancreatic cancer. However, efficacy was limited by the systemic toxicity of IFN and low intratumoral levels of the cytokine. We sought to address these drawbacks by using an Oncolytic Adenovirus expressing IFN (OAd-hamIFN) in combination with chemotherapy and/or radiation in regimens mimicking the IFN-based therapies used in clinical trials. IFN expressed from OAd-hamIFN potentiated the cytotoxicity of radiation and chemotherapy (5-FU, Gemcitabine, and Cisplatin), and enhanced pancreatic cancer cell death in both in vitro and in vivo experimental settings. Notably, synergism was demonstrated in therapeutic groups that combined the interferon-expressing oncolytic virus with chemotherapy and radiation. In an in vivo immunocompetent hamster model, treatment regimens combining oncolytic virus therapy with 5-FU and radiation demonstrated significant tumor growth inhibition and enhanced survival. This is the first study to report synergism between an IFN-expressing oncolytic adenovirus and chemoradiation-based therapies. When combined with an IFN-expressing OAd, there is a significant enhancement of radiation and especially chemoradiation, which may broaden the application of this new therapeutic approach to the pancreatic cancer patients who cannot tolerate existing chemotherapy regimens.

3.
Oral Oncol ; 56: 25-31, 2016 May.
Article in English | MEDLINE | ID: mdl-27086483

ABSTRACT

OBJECTIVES: In recent years, the incidence of Human Papilloma Virus (HPV)-positive head and neck squamous cell carcinomas (HNSCC) has markedly increased. Our aim was to design a novel therapeutic agent through the use of conditionally replicative adenoviruses (CRAds) that are targeted to the HPV E6 and E7 oncoproteins. METHODS: Each adenovirus included small deletion(s) in the E1a region of the genome (Δ24 or CB016) intended to allow for selective replication in HPV-positive cells. In vitro assays were performed to analyze the transduction efficiency of the vectors and the cell viability following viral infection. Then, the UPCI SCC090 cell line (HPV-positive) was used to establish subcutaneous tumors in the flanks of nude mice. The tumors were then treated with either one dose of the virus or four doses (injected every fourth day). RESULTS: The transduction analysis with luciferase-expressing viruses demonstrated that the 5/3 fiber modification maximized virus infectivity. In vitro, both viruses (5/3Δ24 and 5/3CB016) demonstrated profound oncolytic effects. The 5/3CB016 virus was more selective for HPV-positive HNSCC cells, whereas the 5/3Δ24 virus killed HNSCC cells regardless of HPV status. In vivo, single injections of both viruses demonstrated anti-tumor effects for only a few days following viral inoculation. However, after four viral injections, there was statistically significant reductions in tumor growth when compared to the control group (p<0.05). CONCLUSION: CRAds targeted to HPV-positive HNSCCs demonstrated excellent in vitro and in vivo therapeutic effects, and they have the potential to be clinically translated as a novel treatment modality for this emerging disease.


Subject(s)
Alphapapillomavirus/pathogenicity , Carcinoma, Squamous Cell/virology , Head and Neck Neoplasms/virology , Oncolytic Virotherapy , Adenoviridae/genetics , Animals , Cell Line, Tumor , Genetic Vectors , Humans , Injections, Intralesional , Mice , Mice, Nude , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...