Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 29(8): 1197-1212.e8, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35931030

ABSTRACT

Apolipoprotein E4 (APOE4) is the greatest known genetic risk factor for developing sporadic Alzheimer's disease. How the interaction of APOE4 microglia with neurons differs from microglia expressing the disease-neutral APOE3 allele remains unknown. Here, we employ CRISPR-edited induced pluripotent stem cells (iPSCs) to dissect the impact of APOE4 in neuron-microglia communication. Our results reveal that APOE4 induces a lipid-accumulated state that renders microglia weakly responsive to neuronal activity. By examining the transcriptional signatures of APOE3 versus APOE4 microglia in response to neuronal conditioned media, we established that neuronal cues differentially induce a lipogenic program in APOE4 microglia that exacerbates pro-inflammatory signals. Through decreased uptake of extracellular fatty acids and lipoproteins, we identified that APOE4 microglia disrupts the coordinated activity of neuronal ensembles. These findings suggest that abnormal neuronal network-level disturbances observed in Alzheimer's disease patients harboring APOE4 may in part be triggered by impairment in lipid homeostasis in non-neuronal cells.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Humans , Microglia , Neurons
2.
Chem Sci ; 12(7): 2623-2628, 2020 Dec 28.
Article in English | MEDLINE | ID: mdl-34164030

ABSTRACT

Fluorescent nucleobase surrogates capable of Watson-Crick hydrogen bonding are essential probes of nucleic acid structure and dynamics, but their limited brightness and short absorption and emission wavelengths have rendered them unsuitable for single-molecule detection. Aiming to improve on these properties, we designed a new tricyclic pyrimidine nucleoside analogue with a push-pull conjugated system and synthesized it in seven sequential steps. The resulting C-linked 8-(diethylamino)benzo[b][1,8]naphthyridin-2(1H)-one nucleoside, which we name ABN, exhibits ε 442 = 20 000 M-1 cm-1 and Φ em,540 = 0.39 in water, increasing to Φ em = 0.50-0.53 when base paired with adenine in duplex DNA oligonucleotides. Single-molecule fluorescence measurements of ABN using both one-photon and two-photon excitation demonstrate its excellent photostability and indicate that the nucleoside is present to > 95% in a bright state with count rates of at least 15 kHz per molecule. This new fluorescent nucleobase analogue, which, in duplex DNA, is the brightest and most red-shifted known, is the first to offer robust and accessible single-molecule fluorescence detection capabilities.

3.
Bioorg Med Chem Lett ; 30(2): 126818, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31771800

ABSTRACT

GTP cyclohydrolase (GCYH-I) is an enzyme in the folate biosynthesis pathway that has not been previously exploited as an antibiotic target, although several pathogens including N. gonorrhoeae use a form of the enzyme GCYH-IB that is structurally distinct from the human homologue GCYH-IA. A comparison of the crystal structures of GCYH-IA and -IB with the nM inhibitor 8-oxo-GTP bound shows that the active site of GCYH-IB is larger and differently shaped. Based on this structural information, we designed and synthesized a small set of 8-oxo-G derivatives with ether linkages at O6 and O8 expected to displace water molecules from the expanded active site of GCYH-IB. The most potent of these compounds, G3, is selective for GCYH-IB, supporting the premise that potent and selective inhibitors of GCYH-IB could constitute a new class of small molecule antibiotics.


Subject(s)
Anti-Bacterial Agents/chemistry , GTP Cyclohydrolase/chemistry , Guanosine/antagonists & inhibitors , Anti-Bacterial Agents/therapeutic use , Guanosine/analogs & derivatives , Humans , Molecular Structure , Structure-Activity Relationship
4.
Org Chem Front ; 6(9): 1361-1366, 2019 May 07.
Article in English | MEDLINE | ID: mdl-31178993

ABSTRACT

The dynamics of guests in molecular encapsulation complexes have been studied extensively in solution, but the corresponding behavior of those guests when the capsules are present in the solid state is not as well understood. Here we report on comparative solution 1H and solid-state 2H NMR measurements of encapsulation complexes of fluorene(-d 2), fluoranthene(-d 10), and pyrene-(-d 10) in pyrogallol[4]arene hexamers assembled in the solid state by ball milling. In solution, the 1H spectra show that these rigid guests tumble and exchange positions quickly within the capsules' interiors, with the exception of pyrene, which has slower tumbling and positional exchange. Static solid-state 2H NMR using the deuterated guests shows that, when the capsules are in the solid state, their guests retain the liquid state-like dynamics observed for the capsules in solution. When the pyrogallol[4]arene hexamers' pendant decyl groups were substituted with propyl groups, guest dynamics in the solid state were slowed. We propose that these pendant alkyl groups form an interdigitated and dynamic waxy domain surrounding the capsules in the solid state, and that the greater mobility of the decyl groups is translated across the walls of the host, resulting in more rapid guest dynamics in the capsules' interiors.

5.
Curr Protoc Nucleic Acid Chem ; 75(1): e59, 2018 12.
Article in English | MEDLINE | ID: mdl-30369083

ABSTRACT

DEA tC is a tricyclic 2'-deoxycytidine analog that can be incorporated into oligonucleotides by solid-phase synthesis and that exhibits a large fluorescence enhancement when correctly base-paired with a guanine base in a DNA-DNA duplex. The synthesis of DEA tC begins with 5-amino-2-methylbenzothiazole and provides the DEA tC nucleobase analog over five synthetic steps. This nucleobase analog is then silylated using N,O-bis(trimethylsilyl)acetamide and conjugated to Hoffer's chlorosugar to provide the protected DEA tC nucleoside in good yield. Following protective-group removal and chromatographic isolation of the ß-anomer, dimethoxytritylation and phosphoramidite synthesis offer the monomer for solid-phase DNA synthesis. Solid-phase DNA synthesis conditions using extended coupling of the DEA tC amidite and a short deprotection time are employed to maximize efficiency. By following the protocols described in this unit, the DEA tC fluorescent probe can be synthesized and can be incorporated into any desired synthetic DNA oligonucleotide. © 2018 by John Wiley & Sons, Inc.


Subject(s)
DNA Probes/chemical synthesis , DNA/chemistry , Deoxycytidine/chemistry , Fluorescent Dyes/chemical synthesis , Nucleic Acid Hybridization , Amides/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , DNA Probes/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Nucleic Acid Conformation , Phosphoric Acids/chemistry , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
6.
Biochem Biophys Res Commun ; 400(1): 60-5, 2010 Sep 10.
Article in English | MEDLINE | ID: mdl-20691664

ABSTRACT

The fork-head transcription factors are involved in a variety of physiological processes including development, aging, obesity, and cancer. The fork-head transcription factor FOXN3 has been implicated in cell cycle and transcription regulation at the cellular level. However, the physiological functions of FOXN3 in mammals are not known. To understand the role of the fork-head transcription factor FOXN3 in mammalian development, we have generated a mutant mouse model for the Foxn3 gene. Our analysis shows that the Foxn3 mutation leads to partial embryonic and postnatal lethality, growth retardation, eye formation defects, dental anomalies and craniofacial defects. Foxn3 mutant tissues and cells are also defective in the expression of distinct osteogenic genes. Interestingly, the phenotypes of Foxn3 mutant mice show a striking overlap with the clinical features of human patients with congenital defects and chromosomal aberrations involving the human FOXN3 locus. More than three fourths of human congenital disorders involve craniofacial malformations and a majority of the perturbed genetic components that lead to such disorders are yet to be identified. Our results implicate a role for the FOXN3 gene in the etiology of craniofacial defects in humans.


Subject(s)
Cell Cycle Proteins/genetics , Craniofacial Abnormalities/genetics , Embryo Loss/genetics , Forkhead Transcription Factors/metabolism , Genes, Lethal , Repressor Proteins/genetics , Animals , Eye Abnormalities/genetics , Forkhead Transcription Factors/genetics , Growth Disorders/genetics , Humans , Mice , Mice, Mutant Strains , Mutation , Tooth Abnormalities/genetics
7.
Proc Natl Acad Sci U S A ; 106(31): 12776-81, 2009 Aug 04.
Article in English | MEDLINE | ID: mdl-19617567

ABSTRACT

Aneuploidy, the most common chromosomal abnormality at birth and the main ascertained cause of pregnancy loss in humans, originates primarily from chromosome segregation errors during oogenesis. Here, we report that heterozygosity for a mutation in the mitotic checkpoint kinase gene, Bub1, induces aneuploidy in female germ cells of mice and that the effect increases with advancing maternal age. Analysis of Bub1 heterozygous oocytes showed that aneuploidy occurred primarily during the first meiotic division and involved premature sister chromatid separation. Furthermore, aneuploidy was inherited in zygotes and resulted in the loss of embryos after implantation. The incidence of aneuploidy in zygotes was sufficient to explain the reduced litter size in matings with Bub1 heterozygous females. No effects were seen in germ cells from heterozygous males. These findings show that Bub1 dysfunction is linked to inherited aneuploidy in female germ cells and may contribute to the maternal age-related increase in aneuploidy and pregnancy loss.


Subject(s)
Aneuploidy , Oocytes/ultrastructure , Protein Serine-Threonine Kinases/physiology , Animals , Centromere/physiology , Female , Fertility , Heterozygote , Litter Size , Male , Maternal Age , Meiosis , Mice , Mutation , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...