Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biomed Eng ; 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37679571

ABSTRACT

To elicit optimal immune responses, messenger RNA vaccines require intracellular delivery of the mRNA and the careful use of adjuvants. Here we report a multiply adjuvanted mRNA vaccine consisting of lipid nanoparticles encapsulating an mRNA-encoded antigen, optimized for efficient mRNA delivery and for the enhanced activation of innate and adaptive responses. We optimized the vaccine by screening a library of 480 biodegradable ionizable lipids with headgroups adjuvanted with cyclic amines and by adjuvanting the mRNA-encoded antigen by fusing it with a natural adjuvant derived from the C3 complement protein. In mice, intramuscular or intranasal administration of nanoparticles with the lead ionizable lipid and with mRNA encoding for the fusion protein (either the spike protein or the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) increased the titres of antibodies against SARS-CoV-2 tenfold with respect to the vaccine encoding for the unadjuvanted antigen. Multiply adjuvanted mRNA vaccines may improve the efficacy, safety and ease of administration of mRNA-based immunization.

2.
Biophys J ; 121(2): 277-287, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34951982

ABSTRACT

Mucus is a selectively permeable hydrogel that protects wet epithelia from pathogen invasion and poses a barrier to drug delivery. Determining the parameters of a particle that promote or prevent passage through mucus is critical, as it will enable predictions about the mucosal passage of pathogens and inform the design of therapeutics. The effect of particle net charge and size on mucosal transport has been characterized using simple model particles; however, predictions of mucosal passage remain challenging. Here, we utilize rationally designed peptides to examine the integrated contributions of charge, hydrophobicity, and spatial configuration on mucosal transport. We find that net charge does not entirely predict transport. Specifically, for cationic peptides, the inclusion of hydrophobic residues and the position of charged and hydrophobic residues within the peptide impact mucosal transport. We have developed a simple model of mucosal transport that predicts how previously unexplored amino acid sequences achieve slow versus fast passage through mucus. This model may be used as a basis to predict transport behavior of natural peptide-based particles, such as antimicrobial peptides or viruses, and assist in the engineering of synthetic sequences with desired transport properties.


Subject(s)
Mucus , Peptides , Hydrophobic and Hydrophilic Interactions , Mucus/metabolism , Peptides/chemistry
3.
Med ; 2(2): 118-121, 2021 02 12.
Article in English | MEDLINE | ID: mdl-35187514

ABSTRACT

During the SARS-CoV-2 pandemic, experimental research groups face a unique challenge: how to train undergraduates without access to labs. We share our experience developing entirely virtual undergraduate research internships and make a case for virtual research as a complement to traditional undergraduate mentoring, even after the resolution of the pandemic.


Subject(s)
COVID-19 , Mentoring , COVID-19/epidemiology , Humans , Pandemics , SARS-CoV-2 , Students
4.
Biomacromolecules ; 20(4): 1505-1513, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30779551

ABSTRACT

Binding of small molecules to mucus membranes in the body has an important role in human health, as it can affect the diffusivity and activity of any molecule that acts in a mucosal environment. The binding of drugs and of toxins and signaling molecules from mucosal pathogens is of particular clinical interest. Despite the importance of mucus-small molecule binding, there is a lack of data revealing the precise chemical features of small molecules that lead to mucus binding. We developed a novel equilibrium dialysis assay to measure the binding of libraries of small molecules to mucin and other mucus components, substantially increasing the throughput of small molecule binding measurements. We validated the biological relevance of our approach by quantifying binding of the antibiotic colistin to mucin, and showing that this binding was associated with inhibition of colistin's bioactivity. We next used a small molecule microarray to identify 2,4-diaminopyrimidine as a mucin binding motif and confirmed the importance of this motif for mucin binding using equilibrium dialysis. Furthermore, we showed that, for molecules with this motif, binding to mucins and the mucus-associated biopolymers DNA and alginate is modulated by differences in hydrophobicity and charge. Finally, we showed that molecules lacking the motif exhibited different binding trends from those containing the motif. These results open up the prospect of routine testing of small molecule binding to mucus and optimization of drugs for clinically relevant mucus binding properties.


Subject(s)
DNA/chemistry , Mucins/chemistry , Amino Acid Motifs , Animals , Humans , Hydrophobic and Hydrophilic Interactions , Mucous Membrane/chemistry
5.
ACS Biomater Sci Eng ; 5(3): 1189-1194, 2019 Mar 11.
Article in English | MEDLINE | ID: mdl-33405639

ABSTRACT

Mucus, a biopolymer hydrogel that covers all wet epithelia of the body, is a potential site for infection by pathogenic bacteria. Mucus can bind small molecules and influence bacterial physiology, two factors that may affect the efficacy of antibiotics. In spite of this, the impact of mucus on antibiotic activity has not been thoroughly characterized. We examined the activity of polymyxin and fluoroquinolone antibiotics against the opportunistic pathogen Pseudomonas aeruginosa in native mucus and purified mucin biopolymer environments. We found that mucus reduces the effectiveness of polymyxins and fluoroquinolones against P. aeruginosa. Mucin biopolymers MUC5AC, MUC2, and MUC5B are primary contributors to this reduction. Our findings highlight that the biomaterial environmental context should be considered when evaluating antibiotics in vitro.

6.
Curr Opin Biotechnol ; 52: 124-133, 2018 08.
Article in English | MEDLINE | ID: mdl-29674157

ABSTRACT

Mucus is a hydrogel that exhibits complex selective permeability, permitting the passage of some particles while restricting the passage of other particles including important therapeutics. In this review, we discuss biochemical mechanisms underlying mucus penetration and mucus binding, emphasizing the importance of steric, electrostatic, and hydrophobic interactions. We discuss emerging techniques for engineering nanoparticle surface chemistries for mucus penetration as well as recent advances in tuning mucus interactions with small molecule, peptide, or protein therapeutics. Finally, we highlight recent work suggesting that mucus permeability can serve as a biomarker for disease and physiological states such as pregnancy.


Subject(s)
Mucus/metabolism , Animals , Disease , Health , Humans , Permeability , Tissue Engineering
7.
ISME J ; 11(8): 1933-1937, 2017 08.
Article in English | MEDLINE | ID: mdl-28398350

ABSTRACT

Swimming motility is considered a beneficial trait among bacterial species as it enables movement across fluid environments and augments invasion of tissues within the host. However, non-swimming bacteria also flourish in fluid habitats, but how they effectively spread and colonize distant ecological niches remains unclear. We show that non-motile staphylococci can gain motility by hitchhiking on swimming bacteria, leading to extended and directed motion with increased velocity. This phoretic interaction was observed between Staphylococcus aureus and Pseudomonas aeruginosa, Staphylococcus epidermidis and P. aeruginosa, as well as S. aureus and Escherichia coli, suggesting hitchhiking as a general translocation mechanism for non-motile staphylococcal species. By leveraging the motility of swimming bacteria, it was observed that staphylococci can colonize new niches that are less available in the absence of swimming carriers. This work highlights the importance of considering interactions between species within polymicrobial communities, in which bacteria can utilize each other as resources.


Subject(s)
Escherichia coli/physiology , Movement , Pseudomonas aeruginosa/physiology , Staphylococcus/physiology
8.
Rep Prog Phys ; 78(3): 036601, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25719969

ABSTRACT

Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the 3D biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gases, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms.


Subject(s)
Biofilms , Mechanical Phenomena , Permeability
9.
mBio ; 4(4)2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23963183

ABSTRACT

UNLABELLED: ABSTRACT Chronic, biofilm-like infections by the opportunistic pathogen Pseudomonas aeruginosa are a major cause of mortality in cystic fibrosis (CF) patients. While much is known about P. aeruginosa from laboratory studies, far less is understood about what it experiences in vivo. Iron is an important environmental parameter thought to play a central role in the development and maintenance of P. aeruginosa infections, for both anabolic and signaling purposes. Previous studies have focused on ferric iron [Fe(III)] as a target for antimicrobial therapies; however, here we show that ferrous iron [Fe(II)] is abundant in the CF lung (-39 µM on average for severely sick patients) and significantly correlates with disease severity (ρ = -0.56, P = 0.004), whereas ferric iron does not (ρ = -0.28, P = 0.179). Expression of the P. aeruginosa genes bqsRS, whose transcription is upregulated in response to Fe(II), was high in the majority of patients tested, suggesting that increased Fe(II) is bioavailable to the infectious bacterial population. Because limiting Fe(III) acquisition inhibits biofilm formation by P. aeruginosa in various oxic in vitro systems, we also tested whether interfering with Fe(II) acquisition would improve biofilm control under anoxic conditions; concurrent sequestration of both iron oxidation states resulted in a 58% reduction in biofilm accumulation and 28% increase in biofilm dissolution, a significant improvement over Fe(III) chelation treatment alone. This study demonstrates that the chemistry of infected host environments coevolves with the microbial community as infections progress, which should be considered in the design of effective treatment strategies at different stages of disease. IMPORTANCE: Iron is an important environmental parameter that helps pathogens thrive in sites of infection, including those of cystic fibrosis (CF) patients. Ferric iron chelation therapy has been proposed as a novel therapeutic strategy for CF lung infections, yet until now, the iron oxidation state has not been measured in the host. In studying mucus from the infected lungs of multiple CF patients from Europe and the United States, we found that ferric and ferrous iron change in concentration and relative proportion as infections progress; over time, ferrous iron comes to dominate the iron pool. This information is relevant to the design of novel CF therapeutics and, more broadly, to developing accurate models of chronic CF infections.


Subject(s)
Cystic Fibrosis/pathology , Ferrous Compounds/analysis , Iron/analysis , Lung/pathology , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Biofilms/growth & development , Gene Expression Profiling , Humans , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...