Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Leukoc Biol ; 79(3): 539-54, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16365152

ABSTRACT

We report for the first time that primary human neutrophils can undergo persistent, directionally biased movement away from a chemokine in vitro and in vivo, termed chemorepulsion or fugetaxis. Robust neutrophil chemorepulsion in microfluidic gradients of interleukin-8 (IL-8; CXC chemokine ligand 8) was dependent on the absolute concentration of chemokine, CXC chemokine receptor 2 (CXCR2), and was associated with polarization of cytoskeletal elements and signaling molecules involved in chemotaxis and leading edge formation. Like chemoattraction, chemorepulsion was pertussis toxin-sensitive and dependent on phosphoinositide-3 kinase, RhoGTPases, and associated proteins. Perturbation of neutrophil intracytoplasmic cyclic adenosine monophosphate concentrations and the activity of protein kinase C isoforms modulated directional bias and persistence of motility and could convert a chemorepellent to a chemoattractant response. Neutrophil chemorepulsion to an IL-8 ortholog was also demonstrated and quantified in a rat model of inflammation. The finding that neutrophils undergo chemorepulsion in response to continuous chemokine gradients expands the paradigm by which neutrophil migration is understood and may reveal a novel approach to our understanding of the homeostatic regulation of inflammation.


Subject(s)
Chemotaxis, Leukocyte/immunology , Inflammation/immunology , Interleukin-8/immunology , Neutrophils/immunology , Receptors, Interleukin-8B/immunology , Animals , Cell Polarity/drug effects , Cell Polarity/immunology , Cells, Cultured , Chemotaxis, Leukocyte/drug effects , Cyclic AMP/metabolism , Cytoskeleton/drug effects , Cytoskeleton/immunology , Cytoskeleton/metabolism , Dose-Response Relationship, Drug , Humans , Inflammation/physiopathology , Interleukin-8/pharmacology , Neutrophils/drug effects , Pertussis Toxin/pharmacology , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase C/drug effects , Protein Kinase C/metabolism , Pseudopodia/drug effects , Pseudopodia/immunology , Pseudopodia/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Signal Transduction/immunology , rho GTP-Binding Proteins/drug effects , rho GTP-Binding Proteins/metabolism
2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(5 Pt 1): 051301, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11735912

ABSTRACT

We study the effect of fluids on the angle of repose and the segregation of granular matter poured into a silo. The experiments are conducted in two regimes where: (i) the volume fraction of the fluid (liquid) is small and it forms liquid bridges between particles thus giving rise to cohesive forces, and (ii) the particles are completely immersed in the fluid. The data is obtained by imaging the pile formed inside a quasi-two-dimensional silo through the transparent glass side walls and using color-coded particles. In the first series of experiments, the angle of repose is observed to increase sharply with the volume fraction of the fluid and then saturates at a value that depends on the size of the particles. We systematically study the effect of viscosity by using water-glycerol mixtures to vary it over at least three orders of magnitude while keeping the surface tension almost constant. Besides surface tension, the viscosity of the fluid is observed to have an effect on the angle of repose and the extent of segregation. In case of bidisperse particles, segregation is observed to decrease and finally saturate depending on the size ratio of the particles and the viscosity of the fluid. The sharp initial change and the subsequent saturation in the extent of segregation and angle of repose occurs over similar volume fraction of the fluid. Preferential clumping of small particles causes layering to occur when the size of the clumps of small particles exceeds the size of large particles. We calculate the azimuthal correlation function of particle density inside the pile to characterize the extent of layering. In the second series of experiments, particles are poured into a container filled with a fluid. Although the angle of repose is observed to be unchanged, segregation is observed to decrease with an increase in the viscosity of the fluid. The viscosity at which segregation decreases to zero depends on the size ratio of the particles.

3.
Phys Rev Lett ; 87(15): 158102, 2001 Oct 08.
Article in English | MEDLINE | ID: mdl-11580727

ABSTRACT

We report a novel morphological transition in a Bacillus subtilis colony initially growing under ambient conditions, after ultraviolet radiation exposure. The bacteria in the central regions of the colonies are observed to migrate towards the colony edge forming a ring during uniform spatial exposure. When the radiation is switched off, the colonies were observed to grow both inward into the evacuated regions as well as outward indicating that the pattern is not formed due to depletion of nutrients at the center of the colony. We also propose a reaction-diffusion model in which waste-limited chemotaxis initiated by the UV radiation leads to the observed phenomenology.


Subject(s)
Bacillus subtilis/radiation effects , Ultraviolet Rays , Bacillus subtilis/growth & development , Bacillus subtilis/physiology , Movement/radiation effects
4.
Phys Rev Lett ; 85(24): 5102-5, 2000 Dec 11.
Article in English | MEDLINE | ID: mdl-11102196

ABSTRACT

We report the effect of interstitial fluid on the extent of segregation by imaging the pile that results after bidisperse color-coded particles are poured into a silo. Segregation is sharply reduced and preferential clumping of small particles is observed when a small volume fraction of fluid V(f) is added. We find that viscous forces in addition to capillary forces have an important effect on the extent of segregation s and the angle of repose straight theta. We show that the sharp initial change and the subsequent saturation in s and straight theta occurs over similar V(f). We also find that a transition back to segregation can occur when the particles are completely immersed in a fluid at low viscosities.

5.
Article in English | MEDLINE | ID: mdl-11970663

ABSTRACT

We present an experimental study of segregation of granular matter in a quasi-two-dimensional silo emptying out of an orifice. Size separation is observed when multisized particles are used with the larger particles found in the center of the silo in the region of fastest flow. We use imaging to study the flow inside the silo and quantitatively measure the concentration profiles of bidisperse beads as a function of position and time. The angle of the surface is given by the angle of repose of the particles, and the flow occurs in a few layers only near the top of this inclined surface. The flowing region becomes deeper near the center of the silo and is confined to a parabolic region centered at the orifice which is approximately described by the kinematic model. The experimental evidence suggests that the segregation occurs on the surface and not in the flow deep inside the silo where velocity gradients also are present. We report the time development of the concentrations of the bidisperse particles as a function of size ratios, flow rate, and the ratio of initial mixture. The qualitative aspects of the observed phenomena may be explained by a void filling model of segregation.

SELECTION OF CITATIONS
SEARCH DETAIL
...