Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37595938

ABSTRACT

The widespread use of silica nanoparticles (SiO2-NPs) in various industries, including chemical polishing, cosmetics, varnishes, medical, and food products, has increased the risk of their release into aquatic ecosystems. The toxic effects of small-size SiO2-NPs on the reproductive performance of zebrafish (Danio rerio) have yet to be widely studied. This study aimed to investigate the impact of chronic exposure to small-sized (35 ± 6 nm) SiO2-NPs on adult zebrafish through waterborne exposure to concentrations of 5 (SNP5), 10 (SNP10), 15 (SNP15), and 20 (SNP20) µg/L of SiO2-NPs for 28 days. Our results showed that SiO2-NPs significantly impacted several biochemical parameters, including cholesterol, triglycerides, LDL, HDL, total protein, albumin, urea levels, and alkaline phosphatase and aspartate aminotransferase activity. Cortisol and glucose levels in the SNP20 group significantly differed from the control group. All the exposed groups, apart from SNP5, experienced a significant increase in their total immunoglobulin levels and lysozyme activity. While there was a considerable increase in the activity of catalase and superoxide dismutase in all exposed groups, the expression of antioxidant genes did not appear to be affected. Furthermore, the expression level of il8 was significantly higher in SNP5 and SNP10 than in other treatments. Exposure to SiO2-NPs caused a decrease in gonad weight, absolute fecundity, and larval survival rate, particularly in the SNP20 group. The present study indicates that SiO2-NPs can harm zebrafish and thus further research is necessary to assess their health and environmental risks.


Subject(s)
Nanoparticles , Zebrafish , Animals , Silicon Dioxide/toxicity , Ecosystem , Oxidative Stress , Nanoparticles/toxicity
2.
Int J Biol Macromol ; 95: 574-581, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27867054

ABSTRACT

Chitosan is a natural mucoadhesive, biodegradable, biocompatible and nontoxic polymer which has been used in pharmaceutical industry for a lot of purposes such as dissolution enhancing, absorption enhancing, sustained releasing and protein, gene or drug delivery. Two major disadvantages of chitosan are poor solubility in physiological pH and low efficiency for protein and gene delivery. In this study thiolated methylated N-(4-N,N-dimethylaminobenzyl) chitosan was prepared for the first time in order to improve the solubility and delivery properties of chitosan. This novel chitosan derivative was characterized using 1H NMR, Ellman test, TGA and Zetasizer. Cell toxicity studies were performed on Human Embryonic Kidney 293 (Hek293) cell line using XTT method, to investigate the potential effect of this new derivative on cell viability. 1H NMR results showed that all substitution reactions were successfully carried out. Zeta potential of new derivative at acidic and physiological pHs was greater than chitosan and it revealed an increase in solubility of the derivative. Furthermore, it had no significant cytotoxicity against Hek293 cell line in comparison to chitosan. These findings confirm that this new derivative can be introduced as a suitable compound for biomedical purposes.


Subject(s)
Chitosan/analogs & derivatives , Chitosan/chemistry , Drug Carriers/chemistry , Sulfhydryl Compounds/chemistry , Cell Survival/drug effects , Chitosan/toxicity , Drug Carriers/toxicity , HEK293 Cells , Humans , Solubility , Sulfhydryl Compounds/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...