Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Main subject
Publication year range
1.
Phys Rev E ; 110(1-1): 014609, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39160949

ABSTRACT

We are interested in rationalizing the phenomenon of like-charge attraction between charged bodies, such as a pair of colloids, in the strong coupling regime. The two colloids are modelled as uniformly charged parallel plates, neutralized by mobile counterions. In an earlier work [Palaia et al., J. Phys. Chem. B 126, 3143 (2022)1520-610610.1021/acs.jpcb.2c00028], we developed an effective-field theory for symmetric plates, stemming from the ground-state description that holds at infinite couplings. Here, we generalize the approach to the asymmetric case, where the plates bear charges of the same sign, but of different values. In the symmetric situation, the mobile ions, which are localized in the vicinity of the two plates, share equally between both of them. Here, the sharing is nontrivial, depending both on the coupling parameter and the distance between the plates. We thus introduce a counterion occupation parameter that is determined variationally to ensure minimum of the free energy. The analytical results for the pressure as a function of the plate-plate distance d agree well with our Monte Carlo data, in a large interval of strong and intermediate coupling constants Ξ. We show in particular that within this description there exists a range of large distances at which the attractive pressure features a 1/d^{2} behavior.

2.
J Chem Phys ; 159(20)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38018755

ABSTRACT

We have reanalyzed the rich plethora of ground state configurations of the asymmetric Wigner bilayer system that we had recently published in a related diagram of states [Antlanger et al., Phys. Rev. Lett. 117, 118002 (2016)], comprising roughly 60 000 state points in the phase space spanned by the distance between the plates and the charge asymmetry parameter of the system. In contrast to this preceding contribution where the classification of the emerging structures was carried out "by hand," we have used for the present contribution machine learning concepts, notably based on a principal component analysis and a k-means clustering approach: using a 30-dimensional feature vector for each emerging structure (containing relevant information, such as the composition of the configuration as well as the most relevant order parameters), we were able to reanalyze these ground state configurations in a considerably more systematic and comprehensive manner than we could possibly do in the previously published classification scheme. Indeed, we were now able to identify new structures in previously unclassified regions of the parameter space and could considerably refine the previous classification scheme, thereby identifying a rich wealth of new emerging ground state configurations. Thorough consistency checks confirm the validity of the newly defined diagram of states.

3.
Phys Rev E ; 105(5-1): 054112, 2022 May.
Article in English | MEDLINE | ID: mdl-35706298

ABSTRACT

We study classical Ising spin-1/2 models on a two-dimensional (2D) square lattice with ferromagnetic or antiferromagnetic nearest-neighbor interactions, under the effect of a pure imaginary magnetic field. The complex Boltzmann weights of spin configurations cannot be interpreted as a probability distribution, which prevents application of standard statistical algorithms. In this work, the mapping of the Ising spin models under consideration onto symmetric vertex models leads to real (positive or negative) Boltzmann weights. This enables us to apply accurate numerical methods based on the renormalization of the density matrix, namely, the corner transfer matrix renormalization group and the higher-order tensor renormalization group. For the 2D antiferromagnet, varying the imaginary magnetic field, we calculate with high accuracy the curve of critical points related to the symmetry breaking of magnetizations on the interwoven sublattices. The critical exponent ß and the anomaly number c are shown to be constant along the critical line, equal to their values ß=1/8 and c=1/2 for the 2D Ising model in a zero magnetic field. The 2D ferromagnets behave in analogy with their 1D counterparts defined on a chain of sites, namely, there exists a transient temperature which splits the temperature range into its high-temperature and low-temperature parts. The free energy and the magnetization are well defined in the high-temperature region. In the low-temperature region, the free energy exhibits singularities at the Yang-Lee zeros of the partition function and the magnetization is also ill-defined: It varies chaotically with the size of the system. The transient temperature is determined as a function of the imaginary magnetic field by using the fact that from the high-temperature side both the first derivative of the free energy with respect to the temperature and the magnetization diverge at this temperature.

4.
J Phys Chem B ; 126(16): 3143-3149, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35420420

ABSTRACT

Like-charge attraction, driven by ionic correlations, challenges our understanding of electrostatics both in soft and hard matter. For two charged planar surfaces confining counterions and water, we prove that, even at relatively low correlation strength, the relevant physics is the ground-state one, oblivious of fluctuations. Based on this, we derive a simple and accurate interaction pressure that fulfills known exact requirements and can be used as an effective potential. We test this equation against implicit-solvent Monte Carlo simulations and against explicit-solvent simulations of cement and several types of clays. We argue that water destructuring under nanometric confinement drastically reduces dielectric screening, enhancing ionic correlations. Our equation of state at reduced permittivity therefore explains the exotic attractive regime reported for these materials, even in the absence of multivalent counterions.


Subject(s)
Water , Ions , Monte Carlo Method , Solvents , Static Electricity
5.
Phys Rev E ; 102(4-1): 042604, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33212638

ABSTRACT

By a combination of Monte Carlo simulations and analytical calculations, we investigate the effective interactions between highly charged planar interfaces, neutralized by mobile counterions (salt-free system). While most previous analysis have focused on pointlike counterions, we treat them as charged hard spheres. We thus work out the fate of like-charge attraction when steric effects are at work. The analytical approach partitions counterions in two subpopulations, one for each plate, and integrates out one subpopulation to derive an effective Hamiltonian for the remaining one. The effective Hamiltonian features plaquette four-particle interactions, and it is worked out by computing a Gibbs-Bogoliubov inequality for the free energy. At the root of the treatment is the fact that under strong electrostatic coupling, the system of charges forms an ordered arrangement, that can be affected by steric interactions. Fluctuations around the reference positions are accounted for. To dominant order at high coupling, it is found that steric effects do not significantly affect the interplate effective pressure, apart at small distances where hard-sphere overlap are unavoidable, and thus rule out configurations.

6.
Phys Rev E ; 102(1-1): 012125, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32795072

ABSTRACT

We consider the symmetric two-state 16-vertex model on the square lattice whose vertex weights are invariant under any permutation of adjacent edge states. The vertex-weight parameters are restricted to a critical manifold which is self-dual under the gauge transformation. The critical properties of the model are studied numerically with the Corner Transfer Matrix Renormalization Group method. Accuracy of the method is tested on two exactly solvable cases: the Ising model and a specific version of the Baxter eight-vertex model in a zero field that belong to different universality classes. Numerical results show that the two exactly solvable cases are connected by a line of critical points with the polarization as the order parameter. There are numerical indications that critical exponents vary continuously along this line in such a way that the weak universality hypothesis is violated.

7.
Phys Rev E ; 100(4-1): 042611, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31770904

ABSTRACT

Poisson-Boltzmann theory is the cornerstone for soft matter electrostatics. We provide exact analytical solutions to this nonlinear mean-field approach for the diffuse layer of ions in the vicinity of a planar or a cylindrical macroion. While previously known solutions are for homogeneously charged objects, the cases worked out exhibit a modulated surface charge-or equivalently, surface potential-on the macroion (wall) surface. In addition to asymptotic features at large distances from the wall, attention is paid to the fate of the contact theorem, relating the contact density of ions to the local wall charge density. For salt-free systems (counterions only), we make use of results pertaining to the two-dimensional Liouville equation, supplemented by an inverse approach. When salt is present, we invoke the exact two-soliton solution to the 2D sinh-Gordon equation. This leads to inhomogeneous charge patterns, that are either localized or periodic in space. Without salt, the electrostatic signature of a charge pattern on the macroion fades exponentially with distance for a planar macroion, while it decays as an inverse power law for a cylindrical macroion. With salt, our study is limited to the planar geometry and reveals that pattern screening is exponential.

8.
Soft Matter ; 14(20): 4040-4052, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29790889

ABSTRACT

We study thermal equilibrium of classical pointlike counterions confined between symmetrically charged walls at distance d. At very large couplings when the counterion system is in its crystal phase, a harmonic expansion of particle deviations is made around the bilayer positions, with a free lattice parameter determined from a variational approach. For each of the two walls, the harmonic expansion implies an effective one-body potential at the root of all observables of interest in our Wigner strong-coupling expansion. Analytical results for the particle density profile and the pressure are in good agreement with numerical Monte Carlo data, for small as well as intermediate values of d comparable with the Wigner lattice spacing. While the strong-coupling theory is extended to the fluid regime by using the concept of a correlation hole, the Wigner calculations appear trustworthy for all electrostatic couplings investigated. Our results significantly extend the range of accuracy of analytical equations of state for strongly interacting charged planar interfaces.

9.
Phys Rev E ; 97(1-1): 012108, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29448318

ABSTRACT

The partition function of the symmetric (zero electric field) eight-vertex model on a square lattice can be formulated either in the original "electric" vertex format or in an equivalent "magnetic" Ising-spin format. In this paper, both electric and magnetic versions of the model are studied numerically by using the corner transfer matrix renormalization-group method which provides reliable data. The emphasis is put on the calculation of four specific critical exponents, related by two scaling relations, and of the central charge. The numerical method is first tested in the magnetic format, the obtained dependencies of critical exponents on the model's parameters agree with Baxter's exact solution, and weak universality is confirmed within the accuracy of the method due to the finite size of the system. In particular, the critical exponents η and δ are constant as required by weak universality. On the other hand, in the electric format, analytic formulas based on the scaling relations are derived for the critical exponents η_{e} and δ_{e} which agree with our numerical data. These exponents depend on the model's parameters which is evidence for the full nonuniversality of the symmetric eight-vertex model in the original electric formulation.

10.
J Chem Phys ; 149(24): 244904, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30599708

ABSTRACT

We present a comprehensive discussion of the so-called asymmetric Wigner bilayer system, where mobile point charges, all of the same sign, are immersed into the space left between two parallel, homogeneously charged plates (with possibly different charge densities). At vanishing temperatures, the particles are expelled from the slab interior; they necessarily stick to one of the two plates and form there ordered sublattices. Using complementary tools (analytic and numerical), we study systematically the self-assembly of the point charges into ordered ground state configurations as the inter-layer separation and the asymmetry in the charge densities are varied. The overwhelming plethora of emerging Wigner bilayer ground states can be understood in terms of the competition of two strategies of the system: net charge neutrality on each of the plates on the one hand and particles' self-organization into commensurate sublattices on the other hand. The emerging structures range from simple, highly commensurate (and thus very stable) lattices (such as staggered structures, built up by simple motives) to structures with a complicated internal structure. The combined application of our two approaches (whose results agree within remarkable accuracy) allows us to study on a quantitative level phenomena such as over- and underpopulation of the plates by the mobile particles, the nature of phase transitions between the emerging phases (which pertain to two different universality classes), and the physical laws that govern the long-range behaviour of the forces acting between the plates. Extensive, complementary Monte Carlo simulations in the canonical ensemble, which have been carried out at small, but finite temperatures along selected, well-defined pathways in parameter space confirm the analytical and numerical predictions within high accuracy. The simple setup of the Wigner bilayer system offers an attractive possibility to study and to control complex scenarios and strategies of colloidal self-assembly, via the variation of two system parameters.

11.
Soft Matter ; 12(42): 8768-8773, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27714365

ABSTRACT

In a counter-ion only charged fluid, Coulomb coupling is quantified by a single dimensionless parameter. Yet, the theoretical treatment of moderately to strongly coupled charged fluids is a difficult task, central to the understanding of a wealth of soft matter problems, including biological systems. We show that the corresponding coupling regime can be remarkably well described by a single particle treatment, which, at variance with previous works, takes due account of inter-ionic interactions. To this end, the prototypical problem of a planar charged dielectric interface is worked out. Testing our predictions against Monte Carlo simulation data reveals an excellent agreement.

12.
Phys Rev Lett ; 117(11): 118002, 2016 Sep 09.
Article in English | MEDLINE | ID: mdl-27661720

ABSTRACT

Self-assembly into target structures is an efficient material design strategy. Combining analytical calculations and computational techniques of evolutionary and Monte Carlo types, we report about a remarkable structural variability of Wigner bilayer ground states, when charges are confined between parallel charged plates. Changing the interlayer separation, or the plate charge asymmetry, a cascade of ordered patterns emerges. At variance with the symmetric case phenomenology, the competition between commensurability features and charge neutralization leads to long range attraction, appearance of macroscopic charges, exotic phases, and nonconventional phase transitions with distinct critical indices, offering the possibility of a subtle, but precise and convenient control over patterns.

13.
Phys Rev E ; 93(1): 012601, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26871116

ABSTRACT

We consider a set of identical mobile pointlike charges (counterions) confined to a domain with curved hard walls carrying a uniform fixed surface charge density, the system as a whole being electroneutral. Three domain geometries are considered: a pair of parallel plates, the cylinder, and the sphere. The particle system in thermal equilibrium is assumed to be described by the nonlinear Poisson-Boltzmann theory. While the effectively one-dimensional plates and the two-dimensional cylinder have already been solved, the three-dimensional sphere problem is not integrable. It is shown that the contact density of particles at the charged surface is determined by a first-order Abel differential equation of the second kind which is a counterpart of Enig's equation in the critical theory of gravitation and combustion or explosion. This equation enables us to construct the exact series solutions of the contact density in the regions of small and large surface charge densities. The formalism provides, within the mean-field Poisson-Boltzmann framework, the complete thermodynamics of counterions inside a charged sphere (salt-free system).

14.
Article in English | MEDLINE | ID: mdl-26651643

ABSTRACT

In the lattice version of the multicomponent Widom-Rowlinson (WR) model, each site can be either empty or singly occupied by one of M different particles, all species having the same fugacity z. The only nonzero interaction potential is a nearest-neighbor hard-core exclusion between unlike particles. For Mz(d) (M). If M≥M(0), there is an intermediate ordered "crystal phase" (composed of two nonequivalent even and odd sublattices) for z lying between z(c)(M) and z(d)(M) which is driven by entropy. We generalize the multicomponent WR model by replacing the hard-core exclusion between unlike particles by more realistic large (but finite) repulsion. The model is solved exactly on the Bethe lattice with an arbitrary coordination number. The numerical calculations, based on the corner transfer matrix renormalization group, are performed for the two-dimensional square lattice. The results for M=4 indicate that the second-order phase transitions from the disordered gas to the demixed phase become of first order, for an arbitrarily large finite repulsion. The results for M≥M(0) show that, as the repulsion weakens, the region of the crystal phase diminishes itself. For weak enough repulsions, the direct transition between the crystal and demixed phases changes into a separate pair of crystal-gas and gas-demixed transitions; this is an example of a disorder-disorder reentrant transition via an ordered crystal phase. If the repulsion between unlike species is too weak, the crystal phase disappears from the phase diagram. It is shown that the generalized WR model belongs to the Ising universality class.

15.
Article in English | MEDLINE | ID: mdl-26382405

ABSTRACT

We study the ground-state Wigner bilayers of pointlike particles with Yukawa pairwise interactions, confined to the surface of two parallel hard walls at dimensionless distance η. The model involves as limiting cases the unscreened Coulomb potential and hard spheres. The phase diagram of Yukawa particles, studied numerically by Messina and Löwen [Phys. Rev. Lett. 91, 146101 (2003)], exhibits five different staggered phases as η varies from 0 to intermediate values. We present a lattice summation method using the generalized Misra functions which permits us to calculate the energy per particle of the phases with a precision much higher than usual in computer simulations. This allows us to address some tiny details of the phase diagram. Going from the hexagonal phase I to phase II is shown to occur at η=0. All second-order phase transitions are proved to be of mean-field type. We also derive the asymptotic shape of critical lines close to the Coulomb and hard-spheres limits. In and close to the hard-spheres limit, the dependence of the internal parameters of the present phases on η is determined exactly.

16.
Eur Phys J E Soft Matter ; 36(9): 100, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24045984

ABSTRACT

For inhomogeneous classical Coulomb fluids in thermal equilibrium, like the jellium or the two-component Coulomb gas, there exists a variety of exact sum rules which relate the particle one-body and two-body densities. The necessary condition for these sum rules is that the Coulomb fluid possesses good screening properties, i.e. the particle correlation functions or the averaged charge inhomogeneity, say close to a wall, exhibit a short-range (usually exponential) decay. In this work, we study equilibrium statistical mechanics of an electric double layer with counter-ions only, i.e. a globally neutral system of equally charged point-like particles in the vicinity of a plain hard wall carrying a fixed uniform surface charge density of opposite sign. At large distances from the wall, the one-body and two-body counter-ion densities go to zero slowly according to the inverse-power law. In spite of the absence of screening, all known sum rules are shown to hold for two exactly solvable cases of the present system: in the weak-coupling Poisson-Boltzmann limit (in any spatial dimension larger than one) and at a special free-fermion coupling constant in two dimensions. This fact indicates an extended validity of the sum rules and provides a consistency check for reasonable theoretical approaches.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(4 Pt 1): 041401, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22181140

ABSTRACT

We present a new analytical approach to the strong electrostatic coupling regime (SC) that can be achieved equivalently at low temperatures, high charges, low dielectric permittivity, etc. Two geometries are analyzed in detail: one charged wall first, and then two parallel walls at small distances that can be likely or oppositely charged. In all cases, only one type of mobile counterions is present, and ensures electroneutrality (salt-free case). The method is based on a systematic expansion around the ground state formed by the two-dimensional Wigner crystal(s) of counterions at the plate(s). The leading SC order stems from a single-particle theory, and coincides with the virial SC approach that has been much studied in the last 10 years. The first correction has the functional form of the virial SC prediction, but the prefactor is different. The present theory is free of divergences and the obtained results, both for symmetrically and asymmetrically charged plates, are in excellent agreement with available data of Monte Carlo simulations under strong and intermediate Coulombic couplings. All results obtained represent relevant improvements over the virial SC estimates. The present SC theory starting from the Wigner crystal and therefore coined Wigner SC, sheds light on anomalous phenomena like the counterion mediated like-charge attraction, and the opposite-charge repulsion.

18.
Phys Rev Lett ; 106(7): 078301, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21405546

ABSTRACT

We present an analytical approach for similarly and highly charged planar interfaces in the presence of counterions. The procedure is physically transparent and based on an exact low temperature expansion around the ground state formed by the two-dimensional Wigner crystal of counterions. The one plate problem is worked out, together with the two plates situation. Unlike previous approaches, the expansion is free of divergences, and is shown to be in excellent agreement with available data of Monte Carlo simulations under strong Coulombic couplings. In the two plates case, the present results shed light on the like-charge attraction regime.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(3 Pt 1): 031139, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19905094

ABSTRACT

We continue studying long-ranged quantum correlations of surface charge densities on the interface between two media of distinct dielectric functions which are in thermal equilibrium with the radiated electromagnetic field. Two regimes are considered: the nonretarded one with the speed of light c taken to be infinitely large and the retarded one with a finite value of c . The analysis is based on our results obtained by using fluctuational electrodynamics [L. Samaj and B. Jancovici, Phys. Rev. E 78, 051119 (2008)]. Using an integration method in the complex plane and the general analytical properties of dielectric functions in the frequency upper half plane, we derive explicit forms of prefactors to the long-range decay of the surface charge correlation functions for all possible media (conductor, dielectric, and vacuum) configurations. The main result is that the time-dependent quantum prefactor in the retarded regime takes its static classical form for any temperature.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(2 Pt 1): 021111, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19391710

ABSTRACT

Results of a previous paper with the same title are retrieved by a different method. A one-component plasma is bounded by a plane surface. The plasma is fully coupled to the electromagnetic field, therefore, the charge correlations are retarded. The quantum correlation function of the surface charge densities, at times different by t , at asymptotical large distances R, at inverse temperature beta , decays as -1(8pi{2}betaR{3}) , a surprisingly simple result: The decay is independent of Planck's constant variant Planck's over 2pi , the time difference t , and the velocity of light c. The present paper is based on the analysis of the collective vibration modes of the system.

SELECTION OF CITATIONS
SEARCH DETAIL