Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Inflammopharmacology ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38763983

ABSTRACT

Ulcerative colitis (UC) is a chronic colonic inflammation with a significant health hazard. Aspergillus awamori (A. awamori) is a microorganism with various bioactive compounds with natural antioxidant and anti-inflammatory properties. The present work aimed to elucidate the protective and therapeutic effects of varying concentrations of A. awamori against acetic acid (AA)-induced ulcerative colitis (UC) in rats. Nine groups of albino male rats were established: a control negative group (G1), a control positive group (G2,AA), and preventive protocol groups (including G3A, G4A, and G5A) that received 100 mg, 50 mg, and 25 mg/kg b.w, respectively, of A. awamori orally and daily from the 1st day of the experiment and for 7 consecutive days. Then, they were subjected to one dose of AA intrarectally on day 8th. G3B, G4B, and G5B were termed as curative protocol groups that received one dose of AA on day 8th and then administered 100 mg, 50 mg, and 25 mg/kg b.w. of A. awamori, respectively, on day 9th and continued receiving these doses daily until day 16th. Rats in the AA group exhibited marked histopathological alterations of the distal colon, with an exaggeration of the DAI. In addition, a remarkable increase in oxidative stress was represented by the elevation of MDA and NO levels with a decline in SOD and GPx activities. In addition, upregulation of TNF-α, IL-6, and IL-1ß mRNA expressions and downregulation of Muc2 and Nrf2 levels were detected. Unambiguously, a remarkable anti-inflammatory effect was noticed either in A. awamori prevented or treated groups expounded by reducing and regulating TNF-α, IL-6, and IL-1ß with improved pathological lesion scoring. The Muc2, Nrf2, and bcl-2 gene levels were upregulated and restored also. In summary, the findings in this work reveal that A. awamori supplementation successfully alleviated the UC induced by AA, which had a better effect when administered before colitis induction.

2.
Environ Sci Pollut Res Int ; 29(25): 38198-38211, 2022 May.
Article in English | MEDLINE | ID: mdl-35067888

ABSTRACT

Silver nanoparticles (AgNPs) are commonly utilized in medicine. However, they have negative effects on the majority of organs, including the reproductive system. AgNPs were reported to be able to reach the testicular tissues due to their nano size, which allows them to pass through blood-testicular barriers. The goal of this study was to see if alpha-lipoic acid (LA) or Ginkgo biloba (GB) might protect adult rat testes after intraperitoneal injection of AgNPs. Forty male healthy adult Wister albino rats were randomly assigned to four groups: control, AgNPs-intoxicated group intraperitoneally injected AgNPs 50 mg/kg b.w, 3 times a week; LA + AgNPs group intoxicated with AgNPs and orally gavaged with 100 mg LA/kg b.w; and GB + AgNPs group injected with AgNPs and orally given GB extract 120 mg/kg b.w for 30 consecutive days. Biochemical changes (testosterone, ACP, and prostatic acid phosphatase), oxidative indices, mRNA expression of proapoptotic (BAX) and anti-apoptotic (BCL-2) biomarkers, histological, and immunohistochemical changes in testicular tissues were investigated. Significant decrease in serum testosterone level and elevation in ACP and PACP enzyme activity in AgNPs-treated rats. As well, there were lowering in tGSH, GSH GR, GPx, and elevation in MDA and GSSG values. AgNPs-exposed rats expressed downregulation of testicular thirodexin-1 (Txn-1), transforming growth factor-1ß (TGF-1ß), anti-apoptotic (BCL-2), and upregulaion of proapoptotic biomarkers (BAX) mRNA expressions. Strong positive action to BAX and lowering the action of Ki-67 antibody were observed. Because of their antioxidant, anti-inflammatory, and anti-apoptotic properties, cotreatment with LA or GB could be beneficial in reducing the harmful effects of AgNPs on the testicles.


Subject(s)
Metal Nanoparticles , Testicular Diseases , Thioctic Acid , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Biomarkers/metabolism , Ginkgo biloba , Humans , Male , Metal Nanoparticles/toxicity , Oxidative Stress , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Silver/chemistry , Testosterone , Thioctic Acid/metabolism , Thioctic Acid/pharmacology , bcl-2-Associated X Protein/metabolism
3.
Vet World ; 14(3): 788-793, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33935429

ABSTRACT

BACKGROUND AND AIM: Aflatoxins (AFs) are potent toxic metabolites produced from Aspergillus species. Whose existence in poultry ration leads to drastic economic losses, notably in duck, as the most susceptible poultry species. This study aimed to determine tissue residues of AFs, alterations in selected clinical chemistry variables in serum, mainly during the exposure period, and lycopene and silymarin's possible roles as herbal treatments against aflatoxicosis in Pekin duckling. MATERIALS AND METHODS: The study used one hundred and twenty one-day-old Pekin ducklings and classified them into four groups comprising 30 ducklings in each group. The control group (G1) ducklings were fed a mycotoxin-free ration, and G2 received a naturally contaminated ration with 30 ppb of AFs. G3 and G4 consumed contaminated rations with AFs with 30 ppb for 2 weeks and were treated with lycopene 100 mg/kg or silymarin 600 mg/kg/food, respectively, for 10 days. Serum activities of alanine transaminase and alkaline phosphatase (ALP), glutamyl transferase, ALP, total protein and albumin creatinine and uric acid concentrations, oxidant/antioxidant parameters (malondialdehyde [MDA], total antioxidant capacity (TAC), glutathione S-transferase (GST), and catalase [CAT]), and hepatic AFs residue were determined. Lycopene and silymarin were used for the treatment of aflatoxicosis for another 10 days. RESULTS: Hepatic and kidney parameters were elevated in the AFs intoxicated group and reduced in the lycopene- and silymarin-treated groups. They had elevated MDA and AFs residues with decreased antioxidant parameters (TAC, GST, and CAT) in the AFs group. At the same time, treatment with lycopene or silymarin had reversed the action of AFs on MDA, elevated the hepatic residue, and improved antioxidant activity. CONCLUSION: Lycopene and silymarin, with their potent antioxidant activity, can be used to reverse the harmful effects of AFs on hepatic and kidney tissue.

4.
Environ Sci Pollut Res Int ; 27(16): 19058-19072, 2020 Jun.
Article in English | MEDLINE | ID: mdl-30499089

ABSTRACT

Nanoparticles (NPs) are very small particles present in a wide range of materials. There is a dearth of knowledge regarding their potential secondary effects on the health of living organisms and the environment. Increasing research attention, however, has been directed toward determining the effects on humans exposed to NPs in the environment. Although the majority of studies focus on adult animals or populations, embryos of various species are considered more susceptible to environmental effects and pollutants. Hence, research studies dealing mainly with the impacts of NPs on embryogenesis have emerged recently, as this has become a major concern. Chicken embryos occupy a special place among animal models used in toxicity and developmental investigations and have also contributed significantly to the fields of genetics, virology, immunology, cell biology, and cancer. Their rapid development and easy accessibility for experimental observance and manipulation are just a few of the advantages that have made them the vertebrate model of choice for more than two millennia. The early stages of chicken embryogenesis, which are characterized by rapid embryonic growth, provide a sensitive model for studying the possible toxic effects on organ development, body weight, and oxidative stress. The objective of this review was to evaluate the toxicity of various types of carbon black nanomaterials administered at the beginning of embryogenesis in a chicken embryo model. In addition, the effects of diamond and graphene NPs and carbon nanotubes are reviewed.


Subject(s)
Nanoparticles , Nanotubes, Carbon , Animals , Chick Embryo , Chickens , Diamond , Embryonic Development , Humans
5.
Biol Trace Elem Res ; 193(2): 456-465, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31111309

ABSTRACT

Healing of injuries caused by exposure to heat has been discussed in many studies, although a few drugs have been shown to produce satisfactory results. In this study, 100 healthy mice randomly allocated into four categories (each = 25 mice) were analyzed. A deep second-degree burn on the back of each mouse was created. The burns were dressed daily with either AgNPs or silver sulfadiazine over 28 days of treatment. Safety evaluation of the AgNP treatment was performed by measuring the deposition rate of silver in the liver, brain, and kidney of treated mice. In the murine burn model, the speed of wound healing and the antibacterial effect of AgNPs were better than those in the silver sulfadiazine group. Burn wounds treated with SSD appeared to display a greater degree of inflammation as notable by the three clinical signs of the inflammatory process such as redness and swelling which appeared to be less after wounds treated with AgNPs. Also, AgNP treatment modified leukocytic infiltration and reduced collagen degeneration in treated mice and enhanced healing processes that were confirmed by morphological and histological investigations. Beside the potential significant effects of AgNPs on reduction of some microorganism counts that routinely isolated from burn wounds included aerobic organisms as Staphylococcus aureus and Escherichia coli when compared to both SSD and control groups. The deposition kinetics of AgNPs revealed lower distribution in the liver, brain, and kidney than that in silver sulfadiazine-treated mice with respect to both SSD and control groups.


Subject(s)
Burns/drug therapy , Metal Nanoparticles/therapeutic use , Silver/pharmacology , Skin/drug effects , Wound Healing/drug effects , Animals , Brain/metabolism , Burns/microbiology , Disease Models, Animal , Escherichia coli/drug effects , Kidney/metabolism , Liver/metabolism , Metal Nanoparticles/chemistry , Mice , Silver/chemistry , Silver/pharmacokinetics , Silver Sulfadiazine/pharmacokinetics , Silver Sulfadiazine/pharmacology , Skin/metabolism , Skin/microbiology , Staphylococcus aureus/drug effects , Tissue Distribution
6.
Environ Sci Pollut Res Int ; 26(4): 3659-3665, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30535736

ABSTRACT

The ubiquitous use of diazinon (DZN, an organophosphorus insecticide) has increased the probability of occupational, public, and the ecosystem exposure; these exposures are linked to negative health outcomes. The flavonoids curcumin (CUR) and quercetin (QUE) exert significant anti-inflammatory and antioxidant activities against toxicants, including insecticides. However, it is unclear whether their combination enhances these activities. Therefore, 40 albino rat were divided randomly into the CTR, DZN, CUR + DZN, QUE + DZN, and CUR + QUE + DZN groups, which are treated daily via gavage for 28 days. DZN induced neurohepatic inflammation and oxidative damage, which was confirmed by significant (P < 0.05) induction of aspartate and alanine aminotransferases, alkaline phosphatase, lactate dehydrogenase, γ-glutamyl transferase, and tumor necrosis factor-α and inhibition of acetylcholinesterase activity. Furthermore, the liver and brain of DZN-exposed rats exhibited a notable elevation in MDA level paralleled with reduction in antioxidant molecules, i.e., glutathione, superoxide dismutase, glutathione peroxidase, and catalase. The pretreatment of DZN-intoxicated rats with CUR or QUE substantially mitigated neurohepatic dysfunction and inflammation and improved liver and brain antioxidant status with reducing oxidative stress levels. Furthermore, pretreatment with CUR + QUE synergistically restored the neurohepatic dysfunction and oxidative levels to approximately normal levels. The overall results suggested that CUR or QUE inhibits DZN-mediated neurohepatic toxicity via their favorable anti-inflammatory, antioxidant, and free radical-scavenging activities. Moreover, both QUE and CUR may be mutual adjuvant agents against oxidative stress neurohepatic damages.


Subject(s)
Curcumin/pharmacology , Diazinon/toxicity , Inflammation/drug therapy , Quercetin/pharmacology , Acetylcholinesterase/metabolism , Animals , Antioxidants/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Cholinesterase Inhibitors/toxicity , Drug Synergism , Enzymes/metabolism , Glutathione/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Insecticides/toxicity , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Oxidative Stress/drug effects , Rats
7.
Environ Sci Pollut Res Int ; 25(32): 31971-31986, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30229484

ABSTRACT

Some of pathogenic bacteria and fungi have the ability to produce fetal toxins which may be the direct causes of cytotoxicity or cellular dysfunction in the colonization site. Biological and non-biological environmental factors, challenge and microbes influence the effect of toxins on these pathogens. Modern research mentions that many natural materials can reduce the production of toxins in pathogenic microbes. However, researches that explain the mechanical theories of their effects are meager. This review aimed to discuss the ameliorative potential role of plant-derived compounds and probiotics to reduce the toxin production of food-borne microbes either in poultry bodies or poultry feedstuff. Moreover, studies that highlight their own toxicological mechanisms have been discussed. Adding natural additives to feed has a clear positive effect on the enzymatic and microbiological appearance of the small intestine without any adverse effect on the liver. Studies in this respect were proposed to clarify the effects of these natural additives for feed. In conclusion, it could be suggested that the incorporation of probiotics, herbal extracts, and herbs in the poultry diets has some beneficial effects on productive performance, without a positive impact on economic efficiency. In addition, the use of these natural additives in feed has a useful impact on the microbiological appearance of the small intestine and do not have any adverse impacts on intestinal absorption or liver activity as evidenced by histological examination.


Subject(s)
Animal Feed/analysis , Anti-Infective Agents/pharmacology , Plant Extracts/pharmacology , Plants/chemistry , Probiotics/pharmacology , Toxins, Biological/metabolism , Animal Feed/microbiology , Animals , Anti-Infective Agents/analysis , Bacteria/drug effects , Bacteria/metabolism , Fungi/drug effects , Fungi/metabolism , Plant Extracts/analysis , Poultry/growth & development , Probiotics/analysis , Toxins, Biological/analysis
8.
Environ Sci Pollut Res Int ; 25(15): 14397-14406, 2018 May.
Article in English | MEDLINE | ID: mdl-29700747

ABSTRACT

Water represents 71% of all earth area and about 97% of this water is salty water. So, only 3% of the overall world water quantity is freshwater. Human can benefit only from 1% of this water and the remaining 2% freeze at both poles of earth. Therefore, it is important to preserve the freshwater through increasing the plants consuming salty water. The future prosperity of feed resources in arid and semi-arid countries depends on economic use of alternative resources that have been marginalized for long periods of time, such as halophytic plants, which are one such potential future resource. Halophyte plants can grow in high salinity water and soil and to some extent during drought. The growth of these plants depends on the contact of the salted water with plant roots as in semi-desert saline water, mangrove swamps, marshes, and seashores. Halophyte plants need high levels of sodium chloride in the soil water for growth, and the soil water must also contain high levels of salts, as sodium hydroxide or magnesium sulfate. There are many uses for halophyte plants, including feed for animals, vegetables, drugs, sand dune stabilizers, wind shelter, soil cover, wetland cultivation, laundry detergents, and paper production. This paper will focus on the use of halophytes as a feed additive for animals. In spite of the good nutritional value of halophytes, some anti-nutritional factors as nitrates, nitrite complexes, tannins, glycosides, phenolic compounds, saponins, oxalates, and alkaloids may be present in some of them. The presence of such anti-nutritional agents makes halophytes unpalatable to animals, which tends to reduce feed intake and nutrient use. Therefore, the negative effects of these plants on animal performance are the only objection against using halophytes in animal feed diets. This review article highlights the beneficial impact of considering halophytes in animal feeding on saving freshwater and illustrates its nutritive value for livestock from different aspects.


Subject(s)
Plant Roots/chemistry , Salt-Tolerant Plants , Sodium Chloride/pharmacology , Animal Feed , Animals , Fresh Water , Humans , Livestock , Plant Roots/drug effects , Salt-Tolerant Plants/chemistry , Sodium Chloride/chemistry , Soil , Wetlands
9.
Chem Biol Interact ; 295: 133-139, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29496469

ABSTRACT

With ubiquitous applications of nanotechnology, there are increasing probabilities of exposure to manufactured nanoparticles (NPs), which might be posing emerging health concerns on the next generation. Recent data suggest that generation of reactive oxygen species may play an integral role in the carbon black nanoparticles (CBNPs)-induced oxidative injury; however, the exact molecular mechanism has not been clarified. Hence, the role of oxidative stress, inflammation and apoptosis pathways in the CBNPs-induced neuronal toxicity following in-ovo exposure of chicken embryo was elucidated. Specific pathogen-free fertilized Sasso eggs were inoculated with 4.8, 9.5 and 14 µg CBNPs/egg at the 3rd day of incubation alongside vehicle controls. In a concentration-dependent manner, CBNPs inoculation induced oxidative stress, which was ascertained by enhancement of lipid peroxides and diminishing total antioxidant capacity and glutathione levels, and catalase activity in brain tissues. mRNA transcript levels of antioxidant genes showed up-regulation of heme oxygenase-1 and superoxide dismutase-1, with marked down-regulation of glutathione S-transferase-α. Additionally, the pro-inflammatory genes; nuclear factor-κB1 was up-regulated, while interferon-γ was down-regulated. There is also a clear down-regulation in apoptotic markers caspase-8, caspase-3, cytochrome c and B-cell CLL/lymphoma 2 at the different concentrations, while caspase-2 is up-regulated only at higher concentration. Collectively, these results show that CBNPs exposure-mediated overproduction of the free radicals, particularly at higher concentration contributes to inflammation and subsequent cellular apoptosis at the gene expression level, thus unveiling possible molecular relationship between CBNPs and genes linked to the oxidant, inflammatory and apoptotic responses.


Subject(s)
Antioxidants/metabolism , Apoptosis/drug effects , Brain/drug effects , Carbon/pharmacology , Nanoparticles/chemistry , RNA, Messenger/drug effects , Animals , Brain/metabolism , Carbon/chemistry , Chick Embryo , Chickens , Particle Size , RNA, Messenger/genetics , Reactive Oxygen Species/metabolism
10.
Ecotoxicol Environ Saf ; 156: 311-321, 2018 Jul 30.
Article in English | MEDLINE | ID: mdl-29571109

ABSTRACT

The present study was conducted to explore the toxic effects of lead (Pb) on the physiological responses of Japanese quails and to investigate the potential modulatory role of Yucca schidigera extract (YSE) against these effects. 360 mature Japanese quails (at 2 months of age) were used and the experiment was lasted for 8 weeks. The birds were divided into six equal groups as follow: control (basal diet, BD), BD+Pb (100 mg/kg diet), BD+YSE (100 mg/kg diet), BD+YSE (200 mg/kg diet), BD+Pb (100 mg/kg diet) +YSE (100 mg/kg diet) and BD+ Pb (100 mg/kg diet) + YSE (200 mg/kg diet). Pb induced a significant reduction in superoxide dismutase (SOD) and catalase (CAT) activities and reduced glutathione (GSH) level. While, increased protein carbonyl (PC) and malondialdehyde (MDA) content in tissues of exposed birds. Pb increased level of 8-hydroxy-2-deoxyguanosine (8-OHdG) and lactate dehydrogenase (LDH) activity in serum. YSE significantly reduced the Pb -induced oxidative stress in co-treated groups especially at 200 mg/kg diet. YSE could modulate the Pb -induced decreased urea, creatinine and beta-2 microglobulin (B2M) levels. YSE200 was found to be better than the YSE100 in decreasing levels of inflammatory markers including tumor necrosis factor (TNF-α), nitric oxide (NO), transforming growth factor-ß1 (TGF-ß1) and vascular endothelial growth factor (VEGF). Furthermore, YSE significantly regulates glucose homeostasis in co-exposed quails. Pb residues were found to be significantly higher in kidney and pancreas tissues of Pb group compared to other groups. YES decreased the expression of metallothionein-1 in the renal and pancreatic tissues, while elevated insulin expression in the pancreatic cells by immunostaining in co-exposed groups. In conclusion, the present results conclusively demonstrate the potential modulatory effect of YSE against the Pb-induced toxic effects in different organs of Japanese quails.


Subject(s)
Antioxidants/pharmacology , Diabetic Nephropathies/drug therapy , Lead/toxicity , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Yucca/chemistry , 8-Hydroxy-2'-Deoxyguanosine , Animals , Biomarkers/metabolism , Blood Glucose/metabolism , Catalase/blood , Coturnix , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/blood , Diabetic Nephropathies/veterinary , Glomerular Filtration Rate , Glucose Transporter Type 2/metabolism , Glutathione/metabolism , Homeostasis/drug effects , Insulin/blood , Kidney/drug effects , Kidney/metabolism , Malondialdehyde/metabolism , Metallothionein/metabolism , Pancreas/drug effects , Pancreas/metabolism , Superoxide Dismutase/blood , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism
11.
Environ Toxicol ; 30(4): 430-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24293324

ABSTRACT

Fish are relatively sensitive to changes in their surrounding environment, including increasing pollution. Therefore, the present study was undertaken to evaluate the impact of contamination with the pendimethalin-based herbicide; Stomp(®) 50% EC (50% pendimethalin as emulsive concentrate) on adults of the monosex Nile tilapia Oreochromis niloticus L. A total of 260 fish with body weights of 90 ± 5.0 g were used in the determination of the 96-h LC50 value and of the impacts of acute exposure to pendimethalin on physiological parameters, and oxidative stress and antioxidant biomarkers. The 96-h median lethal concentration (96-h LC50 ) value of pendimethalin for monosex Nile tilapia was determined as 4.92 mg/L. Abnormal behavioral responses of the fish and the toxic symptoms of pendimethalin exposure are described. Acute exposure to pendimethalin induced leukocytosis, hyperglobulinemia, and hyperglycemia, but resulted in nonsignificant changes in other hemato-biochemical parameters. Moreover, pendimethalin increased lipid peroxidation (LPO) and decreased levels of reduced glutathione and antioxidant enzymes; superoxide dismutase, catalase, and glutathione reductase in both liver and gill tissues, in a time-dependent manner, with maximum alterations observed in the gills rather than the liver. We conclude that although pendimethalin is moderately toxic, it does not cause hepatorenal toxicity. However, this herbicide pollutant induces major disturbances to the antioxidant system; induction of oxidative stress and LPO is the proposed toxicodynamic pathway for such stress.


Subject(s)
Aniline Compounds/toxicity , Cichlids/metabolism , Herbicides/toxicity , Oxidative Stress , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Gills/metabolism , Lipid Peroxidation/drug effects , Liver/metabolism , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...