Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38581421

ABSTRACT

Boolean models of gene regulatory networks (GRNs) have gained widespread traction as they can easily recapitulate cellular phenotypes via their attractor states. Their overall dynamics are embodied in a state transition graph (STG). Indeed, two Boolean networks (BNs) with the same network structure and attractors can have drastically different STGs depending on the type of Boolean functions (BFs) employed. Our objective here is to systematically delineate the effects of different classes of BFs on the structural features of the STG of reconstructed Boolean GRNs while keeping network structure and biological attractors fixed, and explore the characteristics of BFs that drive those features. Using $10$ reconstructed Boolean GRNs, we generate ensembles that differ in BFs and compute from their STGs the dynamics' rate of contraction or 'bushiness' and rate of 'convergence', quantified with measures inspired from cellular automata (CA) that are based on the garden-of-Eden (GoE) states. We find that biologically meaningful BFs lead to higher STG 'bushiness' and 'convergence' than random ones. Obtaining such 'global' measures gets computationally expensive with larger network sizes, stressing the need for feasible proxies. So we adapt Wuensche's $Z$-parameter in CA to BFs in BNs and provide four natural variants, which, along with the average sensitivity of BFs computed at the network level, comprise our descriptors of local dynamics and we find some of them to be good proxies for bushiness. Finally, we provide an excellent proxy for the 'convergence' based on computing transient lengths originating at random states rather than GoE states.


Subject(s)
Algorithms , Models, Genetic , Gene Regulatory Networks , Cellular Automata
2.
ACS Omega ; 9(11): 13006-13016, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38524439

ABSTRACT

Breast milk serves as a vital source of essential nutrients for infants. However, human milk contamination via the transfer of environmental chemicals from maternal exposome is a significant concern for infant health. The milk to plasma concentration (M/P) ratio is a critical metric that quantifies the extent to which these chemicals transfer from maternal plasma into breast milk, impacting infant exposure. Machine learning-based predictive toxicology models can be valuable in predicting chemicals with a high propensity to transfer into human milk. To this end, we build such classification- and regression-based models by employing multiple machine learning algorithms and leveraging the largest curated data set, to date, of 375 chemicals with known milk-to-plasma concentration (M/P) ratios. Our support vector machine (SVM)-based classifier outperforms other models in terms of different performance metrics, when evaluated on both (internal) test data and an external test data set. Specifically, the SVM-based classifier on (internal) test data achieved a classification accuracy of 77.33%, a specificity of 84%, a sensitivity of 64%, and an F-score of 65.31%. When evaluated on an external test data set, our SVM-based classifier is found to be generalizable with a sensitivity of 77.78%. While we were able to build highly predictive classification models, our best regression models for predicting the M/P ratio of chemicals could achieve only moderate R2 values on the (internal) test data. As noted in the earlier literature, our study also highlights the challenges in developing accurate regression models for predicting the M/P ratio of xenobiotic chemicals. Overall, this study attests to the immense potential of predictive computational toxicology models in characterizing the myriad of chemicals in the human exposome.

3.
Sci Rep ; 14(1): 6734, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38509145

ABSTRACT

Boolean networks (BNs) have been extensively used to model gene regulatory networks (GRNs). The dynamics of BNs depend on the network architecture and regulatory logic rules (Boolean functions (BFs)) associated with nodes. Nested canalyzing functions (NCFs) have been shown to be enriched among the BFs in the large-scale studies of reconstructed Boolean models. The central question we address here is whether that enrichment is due to certain sub-types of NCFs. We build on one sub-type of NCFs, the chain functions (or chain-0 functions) proposed by Gat-Viks and Shamir. First, we propose two other sub-types of NCFs, namely, the class of chain-1 functions and generalized chain functions, the union of the chain-0 and chain-1 types. Next, we find that the fraction of NCFs that are chain-0 (also holds for chain-1) functions decreases exponentially with the number of inputs. We provide analytical treatment for this and other observations on BFs. Then, by analyzing three different datasets of reconstructed Boolean models we find that generalized chain functions are significantly enriched within the NCFs. Lastly we illustrate that upon imposing the constraints of generalized chain functions on three different GRNs we are able to obtain biologically viable Boolean models.


Subject(s)
Gene Regulatory Networks , Models, Genetic , Logic , Models, Biological , Algorithms
4.
Sci Total Environ ; 920: 170968, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38367714

ABSTRACT

Cadmium is a prominent toxic heavy metal that contaminates both terrestrial and aquatic environments. Owing to its high biological half-life and low excretion rates, cadmium causes a variety of adverse biological outcomes. Adverse outcome pathway (AOP) networks were envisioned to systematically capture toxicological information to enable risk assessment and chemical regulation. Here, we leveraged AOP-Wiki and integrated heterogeneous data from four other exposome-relevant resources to build the first AOP network relevant for inorganic cadmium-induced toxicity. From AOP-Wiki, we filtered 309 high confidence AOPs, identified 312 key events (KEs) associated with inorganic cadmium from five exposome-relevant databases using a data-centric approach, and thereafter, curated 30 cadmium relevant AOPs (cadmium-AOPs). By constructing the undirected AOP network, we identified a large connected component of 18 cadmium-AOPs. Further, we analyzed the directed network of 59 KEs and 82 key event relationships (KERs) in the largest component using graph-theoretic approaches. Subsequently, we mined published literature using artificial intelligence-based tools to provide auxiliary evidence of cadmium association for all KEs in the largest component. Finally, we performed case studies to verify the rationality of cadmium-induced toxicity in humans and aquatic species. Overall, cadmium-AOP network constructed in this study will aid ongoing research in systems toxicology and chemical exposome.


Subject(s)
Adverse Outcome Pathways , Humans , Cadmium/toxicity , Artificial Intelligence , Risk Assessment , Databases, Factual
5.
Plant Cell Environ ; 47(3): 961-975, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38044749

ABSTRACT

Sesuvium portulacastrum (L.) is a halophyte, adapted to grow naturally under saline environments. The ability to use Na and K interchangeably indicated its facultative halophyte nature. No significant growth reduction occurs in seedlings up to 250 mM NaCl, except for curling of the youngest leaf. Within 8 h of salt treatment, seedlings accumulate proline, glycine betaine and other amino acids in both root and shoot. Despite a continued increase of tissue Na content, the number of differentially expressed genes (DEGs) decreases between 8 and 24 h of salt exposure, indicating transcriptional restoration after the initial osmotic challenge. At 8 h, upregulated genes mainly encode transporters and transcription factors, while genes in growth-related pathways such as photosynthesis and ribosome-associated biogenesis are suppressed. Overexpression of SpRAB18 (an ABA-responsive dehydrin), one of the most strongly induced DEGs, in soybean was found to increase biomass in control conditions and the growth benefit was maintained when plants were grown in 100 mM NaCl, indicating conservation of function in halophyte and glycophyte. An open-access transcriptome database "SesuviumKB" (https://cb.imsc.res.in/sesuviumkb/) was developed to involve the scientific community in wide-scale functional studies of S. portulacastrum genes, that could pave the way to engineer salt tolerance in crops.


Subject(s)
Aizoaceae , Salt-Tolerant Plants , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Photosynthesis , Salt Tolerance/genetics , Aizoaceae/genetics , Aizoaceae/metabolism , Sodium/metabolism
6.
Sci Total Environ ; 913: 169711, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38160837

ABSTRACT

Vitiligo is a complex disease wherein the environmental factors, in conjunction with the underlying genetic predispositions, trigger the autoimmune destruction of melanocytes, ultimately leading to depigmented patches on the skin. While genetic factors have been extensively studied, the knowledge on environmental triggers remains sparse and less understood. To address this knowledge gap, we present the first comprehensive knowledgebase of vitiligo-triggering chemicals namely, Vitiligo-linked Chemical Exposome Knowledgebase (ViCEKb). ViCEKb involves an extensive and systematic manual effort in curation of published literature and subsequent compilation of 113 unique chemical triggers of vitiligo. ViCEKb standardizes various chemical information, and categorizes the chemicals based on their evidences and sources of exposure. Importantly, ViCEKb contains a wide range of metrics necessary for different toxicological evaluations. Notably, we observed that ViCEKb chemicals are present in a variety of consumer products. For instance, Propyl gallate is present as a fragrance substance in various household products, and Flutamide is used in medication to treat prostate cancer. These two chemicals have the highest level of evidence in ViCEKb, but are not regulated for their skin sensitizing effects. Furthermore, an extensive cheminformatics-based investigation revealed that ViCEKb chemical space is structurally diverse and comprises unique chemical scaffolds in comparison with skin specific regulatory lists. For example, Neomycin and 2,3,5-Triglycidyl-4-aminophenol have unique chemical scaffolds and the highest level of evidence in ViCEKb, but are not regulated for their skin sensitizing effects. Finally, a transcriptomics-based analysis of ViCEKb chemical perturbations in skin cell samples highlighted the commonality in their linked biological processes. Overall, we present the first comprehensive effort in compilation and exploration of various chemical triggers of vitiligo. We believe such a resource will enable in deciphering the complex etiology of vitiligo and aid in the characterization of human chemical exposome. ViCEKb is freely available for academic research at: https://cb.imsc.res.in/vicekb.


Subject(s)
Exposome , Vitiligo , Male , Humans , Vitiligo/chemically induced , Vitiligo/drug therapy , Vitiligo/genetics , Skin , Melanocytes , Knowledge Bases
7.
mBio ; 14(5): e0123223, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37791794

ABSTRACT

IMPORTANCE: Secreted virulence factors play a critical role in bacterial pathogenesis. Virulence effectors not only help bacteria to overcome the host immune system but also aid in establishing infection. Mtb, which causes tuberculosis in humans, encodes various virulence effectors. Triggers that modulate the secretion of virulence effectors in Mtb are yet to be fully understood. To gain mechanistic insight into the secretion of virulence effectors, we performed high-throughput proteomic studies. With the help of system-level protein-protein interaction network analysis and empirical validations, we unravelled a link between phosphorylation and secretion. Taking the example of the well-known virulence factor of CFP10, we show that the dynamics of CFP10 phosphorylation strongly influenced bacterial virulence and survival ex vivo and in vivo. This study presents the role of phosphorylation in modulating the secretion of virulence factors.


Subject(s)
Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/metabolism , Bacterial Proteins/metabolism , Antigens, Bacterial/metabolism , Phosphorylation , Virulence , Proteomics , Virulence Factors
8.
ACS Omega ; 8(37): 34091-34102, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37744817

ABSTRACT

Type 9 secretion system (T9SS) is one of the least characterized secretion systems exclusively found in the Bacteroidetes phylum, which comprises various environmental and economically relevant bacteria. While T9SS plays a central role in bacterial movement termed gliding motility, survival, and pathogenicity, there is an unmet need for a comprehensive tool that predicts T9SS, gliding motility, and proteins secreted via T9SS. In this study, we develop such a computational tool, Type 9 secretion system and Gliding motility Prediction (T9GPred). To build this tool, we manually curated published experimental evidence and identified mandatory components for T9SS and gliding motility prediction. We also compiled experimentally characterized proteins secreted via T9SS and determined the presence of three unique types of C-terminal domain signals, and these insights were leveraged to predict proteins secreted via T9SS. Notably, using recently published experimental evidence, we show that T9GPred has high predictive power. Thus, we used T9GPred to predict the presence of T9SS, gliding motility, and associated secreted proteins across 693 completely sequenced Bacteroidetes strains. T9GPred predicted 402 strains to have T9SS, of which 327 strains are also predicted to exhibit gliding motility. Further, T9GPred also predicted putative secreted proteins for the 402 strains. In a nutshell, T9GPred is a novel computational tool for systems-level prediction of T9SS and streamlining future experimentation. The source code of the computational tool is available in our GitHub repository: https://github.com/asamallab/T9GPred. The tool and its predicted results are compiled in a web server available at: https://cb.imsc.res.in/t9gpred/.

9.
Elife ; 122023 08 29.
Article in English | MEDLINE | ID: mdl-37642294

ABSTRACT

Mycobacterium tuberculosis (Mtb) is evolutionarily equipped to resist exogenous reactive oxygen species (ROS) but shows vulnerability to an increase in endogenous ROS (eROS). Since eROS is an unavoidable consequence of aerobic metabolism, understanding how Mtb manages eROS levels is essential yet needs to be characterized. By combining the Mrx1-roGFP2 redox biosensor with transposon mutagenesis, we identified 368 genes (redoxosome) responsible for maintaining homeostatic levels of eROS in Mtb. Integrating redoxosome with a global network of transcriptional regulators revealed a hypothetical protein (Rv0158) as a critical node managing eROS in Mtb. Disruption of rv0158 (rv0158 KO) impaired growth, redox balance, respiration, and metabolism of Mtb on glucose but not on fatty acids. Importantly, rv0158 KO exhibited enhanced growth on propionate, and the Rv0158 protein directly binds to methylmalonyl-CoA, a key intermediate in propionate catabolism. Metabolite profiling, ChIP-Seq, and gene-expression analyses indicate that Rv0158 manages metabolic neutralization of propionate toxicity by regulating the methylcitrate cycle. Disruption of rv0158 enhanced the sensitivity of Mtb to oxidative stress, nitric oxide, and anti-TB drugs. Lastly, rv0158 KO showed poor survival in macrophages and persistence defect in mice. Our results suggest that Rv0158 is a metabolic integrator for carbon metabolism and redox balance in Mtb.


Subject(s)
Coleoptera , Mycobacterium tuberculosis , Animals , Mice , Mycobacterium tuberculosis/genetics , Propionates , Reactive Oxygen Species , Homeostasis , Oxidation-Reduction , Mutagenesis
10.
RSC Adv ; 13(34): 23461-23471, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37546222

ABSTRACT

The thyroid stimulating hormone receptor (TSHR) is crucial in thyroid hormone production in humans, and dysregulation in TSHR activation can lead to adverse health effects such as hypothyroidism and Graves' disease. Further, animal studies have shown that binding of endocrine disrupting chemicals (EDCs) with TSHR can lead to developmental toxicity. Hence, several such chemicals have been screened for their adverse physiological effects in human cell lines via high-throughput assays in the ToxCast project. The invaluable data generated by the ToxCast project has enabled the development of toxicity predictors, but they can be limited in their predictive ability due to the heterogeneity in structure-activity relationships among chemicals. Here, we systematically investigated the heterogeneity in structure-activity as well as structure-mechanism relationships among the TSHR binding chemicals from ToxCast. By employing a structure-activity similarity (SAS) map, we identified 79 activity cliffs among 509 chemicals in TSHR agonist dataset and 69 activity cliffs among 650 chemicals in the TSHR antagonist dataset. Further, by using the matched molecular pair (MMP) approach, we find that the resultant activity cliffs (MMP-cliffs) are a subset of activity cliffs identified via the SAS map approach. Subsequently, by leveraging ToxCast mechanism of action (MOA) annotations for chemicals common to both TSHR agonist and TSHR antagonist datasets, we identified 3 chemical pairs as strong MOA-cliffs and 19 chemical pairs as weak MOA-cliffs. In conclusion, the insights from this systematic investigation of the TSHR binding chemicals are likely to inform ongoing efforts towards development of better predictive toxicity models for characterization of the chemical exposome.

11.
Mol Divers ; 2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37481749

ABSTRACT

Rift Valley fever is a zoonotic disease that can spread through livestock and mosquitoes, and its symptoms include retinitis, photophobia, hemorrhagic fever and neurological effects. The World Health Organization has identified Rift Valley fever as one of the viral infections that has potential to cause a future epidemic. Hence, efforts are urgently needed toward development of therapeutics and vaccine against this infectious disease. Notably, the causative virus namely, the Rift Valley fever virus (RVFV), utilizes the cap-snatching mechanism for viral transcription, rendering its cap-binding domain (CBD) as an effective antiviral target. To date, there are no published studies towards identification of potential small molecule inhibitors for the CBD of RVFV. Here, we employ a virtual screening workflow comprising of molecular docking and molecular dynamics (MD) simulation, to identify 5 potential phytochemical inhibitors of the CBD of RVFV. These 5 phytochemical inhibitors can be sourced from Indian medicinal plants, Ferula assa-foetida, Glycyrrhiza glabra and Leucas cephalotes, used in traditional medicine. In sum, the 5 phytochemical inhibitors of the CBD of RVFV identified by this purely computational study are promising drug lead molecules which can be considered for detailed experimental validation against RVFV infection.

12.
Front Aging Neurosci ; 15: 1120846, 2023.
Article in English | MEDLINE | ID: mdl-37293668

ABSTRACT

Introduction: Geometry-inspired notions of discrete Ricci curvature have been successfully used as markers of disrupted brain connectivity in neuropsychiatric disorders, but their ability to characterize age-related changes in functional connectivity is unexplored. Methods: We apply Forman-Ricci curvature and Ollivier-Ricci curvature to compare functional connectivity networks of healthy young and older subjects from the Max Planck Institute Leipzig Study for Mind-Body-Emotion Interactions (MPI-LEMON) dataset (N = 225). Results: We found that both Forman-Ricci curvature and Ollivier-Ricci curvature can capture whole-brain and region-level age-related differences in functional connectivity. Meta-analysis decoding demonstrated that those brain regions with age-related curvature differences were associated with cognitive domains known to manifest age-related changes-movement, affective processing, and somatosensory processing. Moreover, the curvature values of some brain regions showing age-related differences exhibited correlations with behavioral scores of affective processing. Finally, we found an overlap between brain regions showing age-related curvature differences and those brain regions whose non-invasive stimulation resulted in improved movement performance in older adults. Discussion: Our results suggest that both Forman-Ricci curvature and Ollivier-Ricci curvature correctly identify brain regions that are known to be functionally or clinically relevant. Our results add to a growing body of evidence demonstrating the sensitivity of discrete Ricci curvature measures to changes in the organization of functional connectivity networks, both in health and disease.

13.
Brief Bioinform ; 24(3)2023 05 19.
Article in English | MEDLINE | ID: mdl-37114653

ABSTRACT

Boolean models are a well-established framework to model developmental gene regulatory networks (DGRNs) for acquisition of cellular identities. During the reconstruction of Boolean DGRNs, even if the network structure is given, there is generally a large number of combinations of Boolean functions that will reproduce the different cell fates (biological attractors). Here we leverage the developmental landscape to enable model selection on such ensembles using the relative stability of the attractors. First we show that previously proposed measures of relative stability are strongly correlated and we stress the usefulness of the one that captures best the cell state transitions via the mean first passage time (MFPT) as it also allows the construction of a cellular lineage tree. A property of great computational importance is the insensitivity of the different stability measures to changes in noise intensities. That allows us to use stochastic approaches to estimate the MFPT and thereby scale up the computations to large networks. Given this methodology, we revisit different Boolean models of Arabidopsis thaliana root development, showing that a most recent one does not respect the biologically expected hierarchy of cell states based on relative stabilities. We therefore developed an iterative greedy algorithm that searches for models which satisfy the expected hierarchy of cell states and found that its application to the root development model yields many models that meet this expectation. Our methodology thus provides new tools that can enable reconstruction of more realistic and accurate Boolean models of DGRNs.


Subject(s)
Arabidopsis , Gene Regulatory Networks , Models, Genetic , Algorithms , Cell Differentiation , Arabidopsis/genetics
14.
Comput Biol Chem ; 104: 107866, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37030102

ABSTRACT

Ectopic pregnancy (EP) is one of the leading causes of maternal mortality, where the fertilized embryo grows outside of the uterus. Recent experiments on mice have uncovered the importance of genetic factors in the transport of embryos inside the uterus. In the past, efforts have been made to identify possible gene or protein markers in EP in humans through multiple expression studies. Although there exist comprehensive gene resources for other maternal health disorders, there is no specific resource that compiles the genes associated with EP from such expression studies. Here, we address that knowledge gap by creating a computational resource, Ectopic Pregnancy Expression Knowledgebase (EPEK), that involves manual compilation and curation of expression profiles of EP in humans from published articles. In EPEK, we compiled information on 314 differentially expressed genes, 17 metabolites, and 3 SNPs associated with EP. Computational analyses on the gene set from EPEK showed the implication of cellular signaling processes in EP. We also identified possible exosome markers that could be clinically relevant in the diagnosis of EP. In a nutshell, EPEK is the first and only dedicated resource on the expression profile of EP in humans. EPEK is accessible at https://cb.imsc.res.in/epek.


Subject(s)
Pregnancy, Ectopic , Pregnancy , Female , Humans , Animals , Mice , Pregnancy, Ectopic/genetics , Pregnancy, Ectopic/diagnosis , Knowledge Bases , Risk Factors
15.
ACS Omega ; 8(9): 8827-8845, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36910986

ABSTRACT

Compilation, curation, digitization, and exploration of the phytochemical space of Indian medicinal plants can expedite ongoing efforts toward natural product and traditional knowledge based drug discovery. To this end, we present IMPPAT 2.0, an enhanced and expanded database compiling manually curated information on 4010 Indian medicinal plants, 17,967 phytochemicals, and 1095 therapeutic uses. Notably, IMPPAT 2.0 compiles associations at the level of plant parts and provides a FAIR-compliant nonredundant in silico stereo-aware library of 17,967 phytochemicals from Indian medicinal plants. The phytochemical library has been annotated with several useful properties to enable easier exploration of the chemical space. We have also filtered a subset of 1335 drug-like phytochemicals of which majority have no similarity to existing approved drugs. Using cheminformatics, we have characterized the molecular complexity and molecular scaffold based structural diversity of the phytochemical space of Indian medicinal plants and performed a comparative analysis with other chemical libraries. Altogether, IMPPAT 2.0 is a manually curated extensive phytochemical atlas of Indian medicinal plants that is accessible at https://cb.imsc.res.in/imppat/.

16.
Sci Total Environ ; 873: 162263, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36801331

ABSTRACT

Androgen mimicking environmental chemicals can bind to Androgen receptor (AR) and can cause severe effects on the reproductive health of males. Predicting such endocrine disrupting chemicals (EDCs) in the human exposome is vital for improving current chemical regulations. To this end, QSAR models have been developed to predict androgen binders. However, a continuous structure-activity relationship (SAR) wherein chemicals with similar structure have similar activity does not always hold. Activity landscape analysis can help map the structure-activity landscape and identify unique features such as activity cliffs. Here we performed a systematic investigation of the chemical diversity along with the global and local structure-activity landscape of a curated list of 144 AR binding chemicals. Specifically, we clustered the AR binding chemicals and visualized the associated chemical space. Thereafter, consensus diversity plot was used to assess the global diversity of the chemical space. Subsequently, the structure-activity landscape was investigated using SAS maps which capture the activity difference and structural similarity among the AR binders. This analysis led to a subset of 41 AR binding chemicals forming 86 activity cliffs, of which 14 are activity cliff generators. Additionally, SALI scores were computed for all pairs of AR binding chemicals and the SALI heatmap was also used to evaluate the activity cliffs identified using SAS map. Finally, we provide a classification of the 86 activity cliffs into six categories using structural information of chemicals at different levels. Overall, this investigation reveals the heterogeneous nature of the structure-activity landscape of AR binding chemicals and provides insights which will be crucial in preventing false prediction of chemicals as androgen binders and developing predictive computational toxicity models in the future.


Subject(s)
Androgens , Receptors, Androgen , Humans , Receptors, Androgen/metabolism , Structure-Activity Relationship , Quantitative Structure-Activity Relationship
17.
ACS Omega ; 8(3): 3102-3113, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36713723

ABSTRACT

Medicinal fungi, including mushrooms, have well-documented therapeutic uses. In this study, we perform a cheminformatics-based investigation of the scaffold and structural diversity of the secondary metabolite space of medicinal fungi and, moreover, perform a detailed comparison with approved drugs, other natural product libraries, and semi-synthetic libraries. We find that the secondary metabolite space of medicinal fungi has similar or higher scaffold diversity in comparison to other natural product libraries analyzed here. Notably, 94% of the scaffolds in the secondary metabolite space of medicinal fungi are not present in the approved drugs. Further, we find that the secondary metabolites, on the one hand, are structurally far from the approved drugs, while, on the other hand, they are close in terms of molecular properties to the approved drugs. Lastly, chemical space visualization using dimensionality reduction methods showed that the secondary metabolite space has minimal overlap with the approved drug space. In a nutshell, our results underscore that the secondary metabolite space of medicinal fungi is a valuable resource for identifying potential lead molecules for natural product-based drug discovery.

18.
Mol Divers ; 27(5): 2169-2184, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36331784

ABSTRACT

The World Health Organization (WHO) recently declared the monkeypox outbreak 'A public health emergency of international concern'. The monkeypox virus belongs to the same Orthopoxvirus genus as smallpox. Although smallpox drugs are recommended for use against monkeypox, monkeypox-specific drugs are not yet available. Drug repurposing is a viable and efficient approach in the face of such an outbreak. Therefore, we present a computational drug repurposing study to identify the existing approved drugs which can be potential inhibitors of vital monkeypox virus proteins, thymidylate kinase and D9 decapping enzyme. The target protein structures of the monkeypox virus were modelled using the corresponding protein structures in the vaccinia virus. We identified four potential inhibitors namely, Tipranavir, Cefiderocol, Doxorubicin, and Dolutegravir as candidates for repurposing against monkeypox virus from a library of US FDA approved antiviral and antibiotic drugs using molecular docking and molecular dynamics simulations. The main goal of this in silico study is to identify potential inhibitors against monkeypox virus proteins that can be further experimentally validated for the discovery of novel therapeutic agents against monkeypox disease.


Subject(s)
Mpox (monkeypox) , Smallpox , Humans , Monkeypox virus , Molecular Docking Simulation , Anti-Bacterial Agents
19.
ACS Omega ; 8(51): 49383-49395, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38162763

ABSTRACT

In human exposome, environmental chemicals can target and disrupt different endocrine axes, ultimately leading to several endocrine disorders. Such chemicals, termed endocrine disrupting chemicals, can promiscuously bind to different endocrine receptors and lead to varying biological end points. Thus, understanding the complexity of molecule-receptor binding of environmental chemicals can aid in the development of robust toxicity predictors. Toward this, the ToxCast project has generated the largest resource on the chemical-receptor activity data for environmental chemicals that were screened across various endocrine receptors. However, the heterogeneity in the multitarget structure-activity landscape of such chemicals is not yet explored. In this study, we systematically curated the chemicals targeting eight human endocrine receptors, their activity values, and biological end points from the ToxCast chemical library. We employed dual-activity difference and triple-activity difference maps to identify single-, dual-, and triple-target cliffs across different target combinations. We annotated the identified activity cliffs through the matched molecular pair (MMP)-based approach and observed that a small fraction of activity cliffs form MMPs. Further, we structurally classified the activity cliffs and observed that R-group cliffs form the highest fraction among the cliffs identified in various target combinations. Finally, we leveraged the mechanism of action (MOA) annotations to analyze structure-mechanism relationships and identified strong MOA-cliffs and weak MOA-cliffs, for each of the eight endocrine receptors. Overall, insights from this first study analyzing the structure-activity landscape of environmental chemicals targeting multiple human endocrine receptors will likely contribute toward the development of better toxicity prediction models for characterizing the human chemical exposome.

20.
Front Public Health ; 11: 1343047, 2023.
Article in English | MEDLINE | ID: mdl-38292391

ABSTRACT

Background: The endocrine-disrupting effects of phytopharmaceutical active substances (PAS) on human health are a public health concern. The CIPATOX-PE database, created in 2018, listed the PAS authorized in France between 1961 and 2014 presenting endocrine-disrupting effects for humans according to data from official international organizations. Since the creation of CIPATOX-PE, European regulations have changed, and new initiatives identifying substances with endocrine-disrupting effects have been implemented and new PAS have been licensed. Objectives: The study aimed to update the CIPATOX-PE database by considering new 2018 European endocrine-disrupting effect identification criteria as well as the new PAS authorized on the market in France since 2015. Methods: The endocrine-disrupting effect assessment of PAS from five international governmental and non-governmental initiatives was reviewed, and levels of evidence were retained by these initiatives for eighteen endocrine target organs. Results: The synthesis of the identified endocrine-disrupting effects allowed to assign an endocrine-disrupting effect level of concern for 241 PAS among 980 authorized in France between 1961 and 2021. Thus, according to the updated CIPATOX-PE data, 44 PAS (18.3%) had an endocrine-disrupting effect classified as "high concern," 133 PAS (55.2%) "concern," and 64 PAS (26.6%) "unknown effect" in the current state of knowledge. In the study, 42 PAS with an endocrine-disrupting effect of "high concern" are similarly classified in CIPATOX-PE-2018 and 2021, and 2 new PAS were identified as having an endocrine-disrupting effect of "high concern" in the update, and both were previously classified with an endocrine-disrupting effect of "concern" in CIPATOX-PE-2018. Finally, a PAS was identified as having an endocrine-disrupting effect of "high concern" in CIPATOX-PE-2018 but is now classified as a PAS not investigated for endocrine-disrupting effects in CIPATOX-PE-2021. The endocrine target organs associated with the largest number of PAS with an endocrine-disrupting effect of "high concern" is the reproductive system with 31 PAS. This is followed by the thyroid with 25 PAS and the hypothalamic-pituitary axis (excluding the gonadotropic axis) with 5 PAS. Discussion: The proposed endocrine-disrupting effect indicator, which is not a regulatory classification, can be used as an epidemiological tool for occupational risks and surveillance.


Subject(s)
Endocrine Disruptors , Humans , European Union , Crop Protection , France , Government
SELECTION OF CITATIONS
SEARCH DETAIL
...