Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Psychoneuroendocrinology ; 135: 105447, 2022 01.
Article in English | MEDLINE | ID: mdl-34741979

ABSTRACT

Since the advent of gene knock-out technology in 1987, insight into the role(s) of neuropeptides in centrally- and peripherally-mediated physiological regulation has been gleaned by examining altered physiological functioning in mammals, predominantly mice, after genetic editing to produce animals deficient in neuropeptides or their cognate G-protein coupled receptors (GPCRs). These results have complemented experiments involving infusion of neuropeptide agonists or antagonists systemically or into specific brain regions. Effects of gene loss are often interpreted as indicating that the peptide and its receptor(s) are required for the physiological or behavioral responses elicited in wild-type mice at the time of experimental examination. These interpretations presume that peptide/peptide receptor gene deletion affects only the expression of the peptide/receptor itself, and therefore impacts physiological events only at the time at which the experiment is conducted. A way to support 'real-time' interpretations of neuropeptide gene knock-out is to demonstrate that the wild-type transcriptome, except for the deliberately deleted gene(s), in tissues of interest, is preserved in the knock-out mouse. Here, we show that there is a cohort of genes (constitutively PACAP-Regulated Genes, or cPRGs) whose basal expression is affected by constitutive knock-out of the Adcyap1 gene in C57Bl6/N mice, and additional genes whose expression in response to physiological challenge, in adults, is altered or impaired in the absence of PACAP expression (acutely PACAP-Regulated Genes, or aPRGs). Distinguishing constitutive and acute transcriptomic effects of neuropeptide deficiency on physiological function and behavior in mice reveals alternative mechanisms of action, and changing functions of neuropeptides, throughout the lifespan.


Subject(s)
Behavior, Animal , Gene Expression Regulation , Pituitary Adenylate Cyclase-Activating Polypeptide , Animals , Behavior, Animal/physiology , Gene Expression Regulation/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
3.
J Mol Neurosci ; 57(2): 282-303, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26319264

ABSTRACT

We have previously demonstrated that mild controlled cortical impact (mCCI) injury to rat cortex causes indirect, concussive injury to underlying hippocampus and other brain regions, providing a reproducible model for mild traumatic brain injury (mTBI) and its neurochemical, synaptic, and behavioral sequelae. Here, we extend a preliminary gene expression study of the hippocampus-specific events occurring after mCCI and identify 193 transcripts significantly upregulated, and 21 transcripts significantly downregulated, 24 h after mCCI. Fifty-three percent of genes altered by mCCI within 24 h of injury are predicted to be expressed only in the non-neuronal/glial cellular compartment, with only 13% predicted to be expressed only in neurons. The set of upregulated genes following mCCI was interrogated using Ingenuity Pathway Analysis (IPA) augmented with manual curation of the literature (190 transcripts accepted for analysis), revealing a core group of 15 first messengers, mostly inflammatory cytokines, predicted to account for >99% of the transcript upregulation occurring 24 h after mCCI. Convergent analysis of predicted transcription factors (TFs) regulating the mCCI target genes, carried out in IPA relative to the entire Affymetrix-curated transcriptome, revealed a high concordance with TFs regulated by the cohort of 15 cytokines/cytokine-like messengers independently accounting for upregulation of the mCCI transcript cohort. TFs predicted to regulate transcription of the 193-gene mCCI cohort also displayed a high degree of overlap with TFs predicted to regulate glia-, rather than neuron-specific genes in cortical tissue. We conclude that mCCI predominantly affects transcription of non-neuronal genes within the first 24 h after insult. This finding suggests that early non-neuronal events trigger later permanent neuronal changes after mTBI, and that early intervention after mTBI could potentially affect the neurochemical cascade leading to later reported synaptic and behavioral dysfunction.


Subject(s)
Brain Injuries/metabolism , Hippocampus/metabolism , Transcriptome , Animals , Brain Injuries/pathology , Cerebral Cortex/injuries , Cerebral Cortex/metabolism , Cytokines/genetics , Cytokines/metabolism , Male , Neuroglia/metabolism , Neurons/metabolism , Organ Specificity , Rats , Rats, Sprague-Dawley
4.
Sci Signal ; 1(31): pt4, 2008 Aug 05.
Article in English | MEDLINE | ID: mdl-18682604

ABSTRACT

The study of signal transduction is becoming a de facto part of the analysis of gene expression and protein profiling techniques. Many online tools are used to cluster genes in various ways or to assign gene products to signal transduction pathways. Among these, pathFinder is a unique tool that can find signal transduction pathways between first, second, or nth messengers and their targets within the cell. pathFinder can identify qualitatively all possible signal transduction pathways connecting any starting component and target within a database of two-component pathways (directional dyads). One or more intermediate pathway components can be excluded to simulate the use of pharmacological inhibitors or genetic deletion (knockout). Missing elements in a pathway connecting the activator or initiator and target can also be inferred from a null pathway result. The value of this static network analysis tool is illustrated by the predication from pathFinder analysis of a novel cyclic AMP-dependent, protein kinase A-independent signaling pathway in neuroendocrine cells, which has been experimentally confirmed.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation , Neurosecretory Systems/metabolism , Signal Transduction , Software , Animals , Gene Deletion , Humans , Neurosecretory Systems/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...