Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 142: 36-48, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35085799

ABSTRACT

Innovative scaffold designs that modulate the local inflammatory microenvironment through favorable macrophage polarization and suppressing oxidative stress are needed for successful clinical translation of regenerative cell therapies and graft integration. We herein report derivation of a hydrazone-crosslinked gallol functionalized hyaluronic acid (HA-GA)-based hydrogel that displayed outstanding viscoelastic properties and immunomodulatory characteristics. Grafting of 6% gallol (GA) to a HA-backbone formed an interpenetrative network by promoting an additional crosslink between the gallol groups in addition to hydrazone crosslinking. This significantly enhanced the mechanical stability and displayed shear-thinning/self-healing characteristics, facilitated tissue adhesive properties to porcine tissue and also displayed radical scavenging properties, protecting encapsulated fibroblasts from peroxide challenge. The THP-1 human macrophage cell line or primary bone-marrow-derived murine macrophages cultured within HA-GA gels displayed selective polarization to a predominantly anti-inflammatory phenotype by upregulating IL4ra, IL-10, TGF-ß, and TGF-ßR1 expression when compared with HA-HA gels. Conversely, culturing of pro-inflammatory activated primary murine macrophages in HA-GA gels resulted in a significant reduction of pro-inflammatory TNF-α, IL-1ß, SOCS3 and IL-6 marker expression, and upregulated expression of anti-inflammatory cytokines including TGF-ß. Finally, when the gels were implanted subcutaneously into healthy mice, we observed infiltration of pro-inflammatory myeloid cells in HA-HA gels, while immunosuppressive phenotypes were observed within the HA-GA gels. Taken together these data suggest that HA-GA gels are an ideal injectable scaffold for viable immunotherapeutic interventions. STATEMENT OF SIGNIFICANCE: Host immune response against the implanted scaffolds that are designed to deliver stem cells or therapeutic proteins in vivo significantly limits the functional outcome. For this reason, we have designed immunomodulatory injectable scaffolds that can favorably polarize the recruited macrophages and impart antioxidant properties to suppress oxidative stress. Specifically, we have tailored a hyaluronic acid-based extracellular matrix mimetic injectable scaffold that is grafted with immunomodulatory gallol moiety. Gallol functionalization of hydrogel not only enhanced the mechanical properties of the scaffold by forming an interpenetrating network but also induced antioxidant properties, tissue adhesive properties, and polarized primary murine macrophages to immunosuppressive phenotype. We believe such immunoresponsive implants will pave the way for developing the next-generation of biomaterials for regenerative medicine applications.


Subject(s)
Hydrogels , Tissue Adhesives , Animals , Antioxidants , Hyaluronic Acid/pharmacology , Hydrazones , Hydrogels/pharmacology , Macrophages , Mice , Phenotype , Swine , Transforming Growth Factor beta
2.
Adv Healthc Mater ; 10(6): e2002058, 2021 03.
Article in English | MEDLINE | ID: mdl-33533187

ABSTRACT

Over the past few years, mesenchymal stem (or stromal) cells (MSCs) have garnered enormous interest due to their therapeutic value especially for their multilineage differentiation potential leading to regenerative medicine applications. MSCs undergo physiological changes upon in vitro expansion resulting in expression of different receptors, thereby inducing high variabilities in therapeutic efficacy. Therefore, understanding the biochemical cues that influence the native local signals on differentiation or proliferation of these cells is very important. There have been several reports that in vitro culture of MSCs in low oxygen gradient (or hypoxic conditions) upregulates the stemness markers and promotes cell proliferation in an undifferentiated state, as hypoxia mimics the conditions the progenitor cells experience within the tissue. However, different studies report different oxygen gradients and culture conditions causing ambiguity in their interpretation of the results. In this progress report, it is aimed to summarize recent studies in the field with specific focus on conflicting results reported during the application of hypoxic conditions for improving the proliferation or differentiation of MSCs. Further, it is tried to decipher the factors that can affect characteristics of MSC under hypoxia and suggest a few techniques that could be combined with hypoxic cell culture to better recapitulate the MSC tissue niche.


Subject(s)
Mesenchymal Stem Cells , Cell Culture Techniques , Cell Differentiation , Cell Hypoxia , Cell Proliferation , Cells, Cultured , Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL
...