Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Trop Med ; 2024: 6966205, 2024.
Article in English | MEDLINE | ID: mdl-38223354

ABSTRACT

Background: The attractive toxic sugar bait (ATSB) is a promising strategy for controlling mosquitoes at the adult stage. The strategy is based on the use of a combination of fruit juice, sugar, and a toxin in order to attract and kill the adult mosquitoes. The selection of the components and optimization of their concentrations is significant for the formulation of an effective ATSB. Methods: The present study formulated nine ATSBs and evaluated their efficacy against two laboratory strains (AND-Aedes aegypti and AND-Aedes aegypti-DL10) and two wildcaught colonized strains of Aedes aegypti (GVD-Delhi and SHD-Delhi). Initially, nine attractive sugar baits (ASBs) were prepared using a mixture of 100% fermented guava juice (attractant) with 10% sucrose solution (w/v) in 1 : 1 ratio. ATSBs were formulated by mixing each ASB with different concentrations of deltamethrin in the ratio of 9 : 1 to obtain final deltamethrin concentration of 0.003125-0.8 mg/10 mL ATSB. Cage bioassays were conducted with 50 mosquitoes for 24 h in order to evaluate the efficacy of each ATSB against the four strains of Ae. aegypti. The data were statistically analyzed using PASW software 19.0 program and 2-way ANOVA. Results: The ATSB formulations registered 8.33-97.44% mortality against AND-Aedes aegypti and 5.15-96.91% mortality against AND-Aedes aegypti-DL10 strains of Ae. aegypti, while GVD-Delhi strain registered 2.04-95.83% mortality and SHD-Delhi strain showed 5.10-97.96% mortality. The administration of 0.8 mg of deltamethrin within 10 mL of attractive toxic sugar bait (ATSB) has led to the maximum mortality rate in adult mosquitoes. Conclusions: The ATSBs formulated with guava juice-ASB and deltamethrin (9 : 1) showed toxin dose-dependent toxicity by all the four strains of Ae. aegypti. Most effective dosage was found as 0.8 mg deltamethrin/10 mL ATSB which imparted 96% to 98% mortality in adult mosquitoes. The investigations demonstrated the efficacy of deltamethrin-laced ATSB formulations against Ae. aegypti and highlighted the need for conduct of structured field trials and investigating the impact on disease vectors and nontarget organisms.

2.
Malar J ; 22(1): 92, 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36899429

ABSTRACT

BACKGROUND: Attractive toxic sugar bait (ATSB) is a promising "attract and kill"-based approach for mosquito control. It is a combination of flower nectar/fruit juice to attract the mosquitoes, sugar solution to stimulate feeding, and a toxin to kill them. Selecting an effective attractant and optimizing concentration of toxicant is significant in the formulation of ATSB. METHODS: Current study formulated an ATSB using fruit juice, sugar and deltamethrin, a synthetic pyrethroid. It was evaluated against two laboratory strains of Anopheles stephensi. Initial studies evaluated comparative attractiveness of nine different fruit juices to An. stephensi adults. Nine ASBs were prepared by adding fermented juices of plum, guava, sweet lemon, orange, mango, pineapple, muskmelon, papaya, and watermelon with 10% sucrose solution (w/v) in 1:1 ratio. Cage bioassays were conducted to assess relative attraction potential of ASBs based on the number of mosquito landings on each and the most effective ASB was identified. Ten ATSBs were prepared by adding the identified ASB with different deltamethrin concentrations (0.015625-8.0 mg/10 mL) in 1:9 ratio. Each ATSB was assessed for the toxic potential against both the strains of An. stephensi. The data was statistically analysed using PASW (SPSS) software 19.0 program. RESULTS: The cage bioassays with nine ASBs revealed higher efficacy (p < 0.05) of Guava juice-ASB > Plum juice-ASB > Mango juice-ASB in comparison to rest of the six ASB's. The bioassay with these three ASB's ascertained the highest attractancy potential of guava juice-ASB against both the strains of An. stephensi. The ATSB formulations resulted in 5.1-97.9% mortality in Sonepat (NIMR strain) with calculated LC30, LC50, and LC90 values of 0.17 mg deltamethrin/10 mL, 0.61 mg deltamethrin/10 mL, and 13.84 mg deltamethrin/10 mL ATSB, respectively. Whereas, 6.12-86.12% mortality was recorded in the GVD-Delhi (AND strain) with calculated LC30, LC50, and LC90 values of 0.25 mg deltamethrin/10 mL, 0.73 mg deltamethrin/10 mL and 10.22 mg deltamethrin/10 mL ATSB, respectively. CONCLUSION: The ATSB formulated with guava juice-ASB and deltamethrin (0.0015625-0.8%) in 9:1 ratio showed promising results against two laboratory strains of An. stephensi. Field assessment of these formulations is being conducted to estimate their feasibility for use in mosquito control.


Subject(s)
Anopheles , Insecticides , Pyrethrins , Animals , Sugars/toxicity , Anopheles/physiology , Carbohydrates , Mosquito Control/methods
3.
Front Physiol ; 13: 988907, 2022.
Article in English | MEDLINE | ID: mdl-36111159

ABSTRACT

Despite the continuous use of chemical interventions, Aedes-borne diseases remain on the rise. Neonicotinoids are new, safer, and relatively effective pharmacological interventions against mosquitoes. Neonicotinoids interact with the postsynaptic nicotinic acetylcholine receptors (nAChRs) of the insect central nervous system, but the absence of nAChR polymorphism in resistant phenotypes makes their involvement in neonicotinoid resistance uncertain. Thus, an investigation was carried out to understand the role of metabolic detoxification and target site insensitivity in imparting acetamiprid resistance in Aedes aegypti larvae. Studies were conducted on the parent susceptible strain (PS), acetamiprid-larval selected strain for five generations (ACSF-5; 8.83-fold resistance) and 10 generations (ACSF-10; 19.74-fold resistance) of Ae. aegypti. The larval selection raised α-esterase and ß-esterase activities by 1.32-fold and 1.34-fold, respectively, in ACSF-10 as compared to PS, while the corresponding glutathione-S-transferase and acetylcholinesterase activity increased by 22.5 and 2%. The ace-1 gene in PS and ACSF-10 showed four mismatches in the 1312-1511 bp region due to mutations in the Y455C codon (tyrosine to cysteine) at the 1367th position (TAC→TGC); I457V codon (isoleucine to valine) at 1372 bp and 1374 bp (ATA→GTG); and R494M codon (arginine to methionine) at 1484 bp (AGG→ATG). The R494M mutation was the novel and dominant type, observed in 70% ACSF-10 population, and has not been reported so far. The studies evidenced the combination of metabolic detoxification and target site mutation in imparting acetamiprid resistance in Ae. aegypti.

4.
J Trop Med ; 2022: 2977454, 2022.
Article in English | MEDLINE | ID: mdl-35832334

ABSTRACT

Background: Attractive toxic sugar bait (ATSB), based on "attract and kill" approach, is a novel and promising strategy for mosquito control. Formulation of an attractive sugar bait (ASB) solution by selecting an efficient olfaction stimulant and preparation of an optimized sugar-attractant dosage is a significant component for the success of the approach. Methods: Current study evaluated relative potential of nine ASBs, formulated by combination of sugar and fresh fruit juices (guava, mango, muskmelon, orange, papaya, pineapple, plum, sweet lemon, and watermelon) in attracting Aedes aegypti adults. Freshly extracted and 48-hour-fermented juices were combined with 10% sucrose solution (w/v) in 1 : 1 ratio. Cage bioassays were conducted against two laboratory strains (susceptible: AND-Aedes aegypti; deltamethrin-selected: AND-Aedes aegypti-DL10) and two field-collected strains (Shahdara strain of Aedes aegypti: SHD-Delhi; Govindpuri strain of Aedes aegypti: GVD-Delhi). Each of the nine ASBs was assayed, individually or in groups of three, for its attraction potential based on the relative number of mosquito landings. The data were analysed for statistical significance using PASW (SPSS) software 19.0 program. Results: The prescreening bioassay with individual ASB revealed significantly higher efficacy of ASB containing guava/plum/mango juice than that containing six other juices (p < 0.05) against both the laboratory and field strains. The bioassay with three ASBs kept in one cage, one of the effective ASBs and two others randomly selected ASBs, also showed good attractancy of the guava/plum/mango juice-ASB (p < 0.05). The postscreening assays with these three ASBs revealed maximum attractant potential of guava juice-sucrose combination for all the four strains of Ae. aegypti. Conclusion. Guava juice-ASB showed the highest attractancy against both laboratory and field-collected strains of Ae. aegypti and can be used to formulate ATSB by combining with a toxicant. The field studies with these formulations will ascertain their efficacy and possible use in mosquito management programs.

5.
Bull Entomol Res ; 112(4): 557-566, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35199631

ABSTRACT

Aedes-borne diseases are on the rampant rise despite continued application of chemical insecticide-based interventions. The appearance of high degree of insecticide resistance in Aedes species and noxious effects on environment and non-targets have raised further concerns. Among new chemical interventions, neonicotinoids are considered a safe and effective approach. The present study investigated the control potency of acetamiprid and development of resistance in Aedes aegypti larvae; and the involvement of CYP450 monooxygenases in inducing resistance. The early fourth instars of Ae. aegypti parent susceptible strain (PS) were selected with acetamiprid for 15 generations (ACSF strain) increasing the resistance to 19.74-fold in ACSF-10 and 36.71-fold in ACSF-15. The ACSF-10 larvae were assayed with acetamiprid combined with piperonyl butoxide (PBO) in three different ratios (1:1, 1:5 and 1:10) and selected for next five generations with 1:10 combination. Selection with synergized acetamiprid (APSF strains) reversed as well as reduced the rate of resistance development resulting in only 1.35-fold resistance in APSF-15. The APSF strains showed %monooxygenase dependency ranging from 86.71 to 96.72%. The estimation of the monooxygenases levels in parent and selected larvae showed increased monooxygenase level in the ACSF strains by 2.42-2.87-fold. The APSF-15 strains exhibited 57.95% lower enzyme production than ACSF-15 strain. The reduction and reversion of resistance by using PBO and the elevated levels of monooxygenases in ACSF and reduction in APSF strains recommend the involvement of CYP450-mediated mechanism in the development of acetamiprid resistance in Ae. aegypti. These studies could help in devising resistance management strategies in order to preserve the efficiency of pre-existing insecticides.


Subject(s)
Aedes , Dengue , Insecticides , Pyrethrins , Animals , Insecticide Resistance , Insecticides/pharmacology , Larva , Mixed Function Oxygenases/pharmacology , Neonicotinoids/pharmacology , Pyrethrins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...