Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(11): e0186146, 2017.
Article in English | MEDLINE | ID: mdl-29117191

ABSTRACT

The Great Barrier Reef Marine Park (GBRMP) is the largest network of marine reserves in the world, yet little is known of the efficacy of no-fishing zones in the relatively lightly-exploited remote parts of the system (i.e., northern regions). Here, we find that the detection of reserve effects is challenging and that heterogeneity in benthic habitat composition, specifically branching coral cover, is one of the strongest driving forces of fish assemblages. As expected, the biomass of targeted fish species was generally greater (up to 5-fold) in no-take zones than in fished zones, but we found no differences between the two forms of no-take zone: 'no-take' versus 'no-entry'. Strong effects of zoning were detected in the remote Far-North inshore reefs and more central outer reefs, but surprisingly fishing effects were absent in the less remote southern locations. Moreover, the biomass of highly targeted species was nearly 2-fold greater in fished areas of the Far-North than in any reserve (no-take or no-entry) further south. Despite high spatial variability in fish biomass, our results suggest that fishing pressure is greater in southern areas and that poaching within reserves may be common. Our results also suggest that fishers 'fish the line' as stock sizes in exploited areas decreased near larger no-take zones. Interestingly, an analysis of zoning effects on small, non-targeted fishes appeared to suggest a top-down effect from mesopredators, but was instead explained by variability in benthic composition. Thus, we demonstrate the importance of including appropriate covariates when testing for evidence of trophic cascades and reserve successes or failures.


Subject(s)
Conservation of Natural Resources , Coral Reefs , Fisheries , Marine Biology , Animals , Anthozoa/physiology , Ecosystem , Trout/physiology
2.
Environ Monit Assess ; 187(1): 4089, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25394769

ABSTRACT

Establishing the effectiveness of habitat features to act as surrogate measures of diversity and abundance of juvenile reef fish provides information that is critical to coral reef management. When accurately set on a broader spatial context, microhabitat information becomes more meaningful and its management application becomes more explicit. The goal of the study is to identify coral reef areas potentially important to juvenile fishes in Ngederrak Reef, Republic of Palau, across different spatial scales. To achieve this, the study requires the accomplishment of the following tasks: (1) structurally differentiate the general microhabitat types using acoustics; (2) quantify microhabitat association with juvenile reef fish community structure; and (3) conduct spatial analysis of the reef-wide data and locate areas optimal for juvenile reef fish settlement. The results strongly suggest the importance of branching structures in determining species count and abundance of juvenile reef fish at the outer reef slope of Ngederrak Reef. In the acoustic map, the accurate delineation of these features allowed us to identify reef areas with the highest potential to harbor a rich aggregation of juvenile reef fish. Using a developed spatial analysis tool that ranks pixel groups based on user-defined parameters, the reef area near the Western channel of Ngederrak is predicted to have the most robust aggregation of juvenile reef fish. The results have important implications not only in management, but also in modeling the impacts of habitat loss on reef fish community. At least for Ngederrak Reef, the results advanced the utility of acoustic systems in predicting spatial distribution of juvenile fish.


Subject(s)
Coral Reefs , Fishes/physiology , Animals , Conservation of Natural Resources , Ecosystem , Environmental Monitoring , Nesting Behavior , Palau
SELECTION OF CITATIONS
SEARCH DETAIL
...