Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5268, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644054

ABSTRACT

A lack of composable and tunable gene regulators has hindered efforts to engineer non-model bacteria and consortia. Toward addressing this, we explore the broad-host potential of small transcription activating RNA (STAR) and propose a design strategy to achieve tunable gene control. First, we demonstrate that STARs optimized for E. coli function across different Gram-negative species and can actuate using phage RNA polymerase, suggesting that RNA systems acting at the level of transcription are portable. Second, we explore an RNA design strategy that uses arrays of tandem and transcriptionally fused RNA regulators to precisely alter regulator concentration from 1 to 8 copies. This provides a simple means to predictably tune output gain across species and does not require access to large regulatory part libraries. Finally, we show RNA arrays can be used to achieve tunable cascading and multiplexing circuits across species, analogous to the motifs used in artificial neural networks.


Subject(s)
Bacteriophages , Escherichia coli , Escherichia coli/genetics , Bacteria/genetics , Bacteriophages/genetics , Engineering , RNA
2.
bioRxiv ; 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36865180

ABSTRACT

A lack of composable and tunable gene regulators has hindered efforts to engineer non-model bacteria and consortia. To address this, we explore the broad-host potential of small transcription activating RNA (STAR) and propose a novel design strategy to achieve tunable gene control. First, we demonstrate that STARs optimized for E. coli function across different Gram-negative species and can actuate using phage RNA polymerase, suggesting that RNA systems acting at the level of transcription are portable. Second, we explore a novel RNA design strategy that uses arrays of tandem and transcriptionally fused RNA regulators to precisely alter regulator concentration from 1 to 8 copies. This provides a simple means to predictably tune output gain across species and does not require access to large regulatory part libraries. Finally, we show RNA arrays can be used to achieve tunable cascading and multiplexing circuits across species, analogous to the motifs used in artificial neural networks.

3.
Chem Sci ; 11(37): 10287, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-34094293

ABSTRACT

[This corrects the article DOI: 10.1039/C8SC03426E.].

4.
Chem Sci ; 10(9): 2653-2662, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30996981

ABSTRACT

A multitude of biological applications for CRISPR-associated (Cas) nucleases have propelled the development of robust cell-based methods for quantitation of on- and off-target activities of these nucleases. However, emerging applications of these nucleases require cell-free methods that are simple, sensitive, cost effective, high throughput, multiplexable, and generalizable to all classes of Cas nucleases. Current methods for cell-free detection are cumbersome, expensive, or require sophisticated sequencing technologies, hindering their widespread application beyond the field of life sciences. Developing such cell-free assays is challenging for multiple reasons, including that Cas nucleases are single-turnover enzymes that must be present in large excess over their substrate and that different classes of Cas nucleases exhibit wildly different operating mechanisms. Here, we report the development of a cell-free method wherein Cas nuclease activity is amplified via an in vitro transcription reaction that produces a fluorescent RNA:small-molecule adduct. We demonstrate that our method is sensitive, detecting activity from low nanomolar concentrations of several families of Cas nucleases, and can be conducted in a high-throughput microplate fashion with a simple fluorescent-based readout. We provide a mathematical framework for quantifying the activities of these nucleases and demonstrate two applications of our method, namely the development of a logic circuit and the characterization of an anti-CRISPR protein. We anticipate our method will be valuable to those studying Cas nucleases and will allow the application of Cas nuclease beyond the field of life sciences.

SELECTION OF CITATIONS
SEARCH DETAIL
...