Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Genome Biol ; 25(1): 142, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38825692

ABSTRACT

BACKGROUND: Like its parent base 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) is a direct epigenetic modification of cytosines in the context of CpG dinucleotides. 5hmC is the most abundant oxidized form of 5mC, generated through the action of TET dioxygenases at gene bodies of actively-transcribed genes and at active or lineage-specific enhancers. Although such enrichments are reported for 5hmC, to date, predictive models of gene expression state or putative regulatory regions for genes using 5hmC have not been developed. RESULTS: Here, by using only 5hmC enrichment in genic regions and their vicinity, we develop neural network models that predict gene expression state across 49 cell types. We show that our deep neural network models distinguish high vs low expression state utilizing only 5hmC levels and these predictive models generalize to unseen cell types. Further, in order to leverage 5hmC signal in distal enhancers for expression prediction, we employ an Activity-by-Contact model and also develop a graph convolutional neural network model with both utilizing Hi-C data and 5hmC enrichment to prioritize enhancer-promoter links. These approaches identify known and novel putative enhancers for key genes in multiple immune cell subsets. CONCLUSIONS: Our work highlights the importance of 5hmC in gene regulation through proximal and distal mechanisms and provides a framework to link it to genome function. With the recent advances in 6-letter DNA sequencing by short and long-read techniques, profiling of 5mC and 5hmC may be done routinely in the near future, hence, providing a broad range of applications for the methods developed here.


Subject(s)
5-Methylcytosine , Enhancer Elements, Genetic , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Humans , Neural Networks, Computer , Gene Expression Regulation , Epigenesis, Genetic , DNA Methylation
2.
Res Sq ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38313292

ABSTRACT

Differentiating B cells in germinal centers (GC) require tightly coordinated transcriptional and epigenetic transitions to generate efficient humoral immune responses. The mammalian Brg1/Brm-associated factor (BAF) complexes are major regulators of nucleosomal remodeling, crucial for cellular differentiation and development, and are commonly mutated in several cancers, including GC-derived B cell lymphomas. However, the specific roles of distinct BAF complexes in GC B cell biology and generation of functional humoral immune responses are not well understood. Here, we show that the A-T Rich Interaction Domain 1a (Arid1a) containing canonical BAF (cBAF) complex is required for maintenance of GCs and therefore high affinity antibody responses. While Arid1a-deficient B cells undergo activation to initiate GC responses, they fail to sustain the GC program resulting in premature GC collapse. We discovered that Arid1a-dependent cBAF activity establishes permissive chromatin landscapes during B cell activation and is concomitantly required to suppress inflammatory gene programs to maintain transcriptional fidelity in early GC B cells. Interestingly, the inflammatory signatures instigated by Arid1a deficiency in early GC B cells recruited neutrophils and inflammatory monocytes and eventually disrupted GC homeostasis. Dampening of inflammatory cues with anti-inflammatory glucocorticoid receptor signaling rescued GC B cell differentiation of Arid1a-deficient B cells, thus highlighting a critical role of inflammation in impeding GC responses. In sum, our work identifies essential functions of Arid1a-dependent BAF activity in promoting efficient GC responses. These findings further support an emerging paradigm in which unrestrained inflammation limits GC-derived humoral responses, as reported in the context of severe bacterial and viral infections.

3.
Nat Immunol ; 23(1): 99-108, 2022 01.
Article in English | MEDLINE | ID: mdl-34937926

ABSTRACT

Enzymes of the TET family are methylcytosine dioxygenases that undergo frequent mutational or functional inactivation in human cancers. Recurrent loss-of-function mutations in TET proteins are frequent in human diffuse large B cell lymphoma (DLBCL). Here, we investigate the role of TET proteins in B cell homeostasis and development of B cell lymphomas with features of DLBCL. We show that deletion of Tet2 and Tet3 genes in mature B cells in mice perturbs B cell homeostasis and results in spontaneous development of germinal center (GC)-derived B cell lymphomas with increased G-quadruplexes and R-loops. At a genome-wide level, G-quadruplexes and R-loops were associated with increased DNA double-strand breaks (DSBs) at immunoglobulin switch regions. Deletion of the DNA methyltransferase DNMT1 in TET-deficient B cells prevented expansion of GC B cells, diminished the accumulation of G-quadruplexes and R-loops and delayed B lymphoma development, consistent with the opposing functions of DNMT and TET enzymes in DNA methylation and demethylation. Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated depletion of nucleases and helicases that regulate G-quadruplexes and R-loops decreased the viability of TET-deficient B cells. Our studies suggest a molecular mechanism by which TET loss of function might predispose to the development of B cell malignancies.


Subject(s)
B-Lymphocytes/immunology , Carcinogenesis/immunology , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/immunology , Dioxygenases/immunology , Homeostasis/immunology , R-Loop Structures/immunology , Animals , Cell Differentiation/immunology , DNA Methylation/immunology , G-Quadruplexes , Germinal Center/immunology , Mice , Mice, Inbred C57BL
4.
EMBO Rep ; 22(8): e52716, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34288360

ABSTRACT

TET methylcytosine dioxygenases are essential for the stability and function of regulatory T cells (Treg cells), which maintain immune homeostasis and self-tolerance and express the lineage-determining transcription factor Foxp3. Here, we use whole-genome analyses to show that the transcriptional program and epigenetic features (DNA modification, chromatin accessibility) of Treg cells are attenuated in the absence of Tet2 and Tet3. Conversely, the addition of the TET activator vitamin C during TGFß-induced iTreg cell differentiation in vitro potentiates the expression of Treg signature genes and alters the epigenetic landscape to better resemble that of Treg cells generated in vivo. Vitamin C enhances IL-2 responsiveness in iTreg cells by increasing IL2Rα expression, STAT5 phosphorylation, and STAT5 binding, mimicking the IL-2/STAT5 dependence of Treg cells generated in vivo. In summary, TET proteins play essential roles in maintaining Treg molecular features and promoting their dependence on IL-2. TET activity during endogenous Treg development and potentiation of TET activity by vitamin C during iTreg differentiation are necessary to maintain the transcriptional and epigenetic features of Treg cells.


Subject(s)
Dioxygenases , T-Lymphocytes, Regulatory , Cell Differentiation/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta/metabolism
6.
Mol Cell ; 77(2): 384-394.e4, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31806351

ABSTRACT

HMCES (5hmC binding, embryonic stem cell-specific-protein), originally identified as a protein capable of binding 5-hydroxymethylcytosine (5hmC), an epigenetic modification generated by TET proteins, was previously reported to covalently crosslink to DNA at abasic sites via a conserved cysteine. We show here that Hmces-deficient mice display normal hematopoiesis without global alterations in 5hmC. HMCES specifically enables DNA double-strand break repair through the microhomology-mediated alternative-end-joining (Alt-EJ) pathway during class switch recombination (CSR) in B cells, and HMCES deficiency leads to a significant defect in CSR. HMCES mediates Alt-EJ through its SOS-response-associated-peptidase domain (SRAPd), a function that requires DNA binding but is independent of its autopeptidase and DNA-crosslinking activities. We show that HMCES is recruited to switch regions of the immunoglobulin locus and provide a potential structural basis for the interaction of HMCES with long DNA overhangs generated by Alt-EJ during CSR. Our studies provide further evidence for a specialized role for HMCES in DNA repair.


Subject(s)
B-Lymphocytes/physiology , DNA End-Joining Repair/genetics , DNA-Binding Proteins/genetics , DNA/genetics , Immunoglobulin Class Switching/genetics , Animals , Cell Line, Tumor , DNA Breaks, Double-Stranded , DNA Damage/genetics , Mice , Mice, Inbred C57BL , Translocation, Genetic/genetics
7.
Nat Immunol ; 20(12): 1700, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31624378

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Proc Natl Acad Sci U S A ; 116(25): 12410-12415, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31152140

ABSTRACT

T cells expressing chimeric antigen receptors (CAR T cells) have shown impressive therapeutic efficacy against leukemias and lymphomas. However, they have not been as effective against solid tumors because they become hyporesponsive ("exhausted" or "dysfunctional") within the tumor microenvironment, with decreased cytokine production and increased expression of several inhibitory surface receptors. Here we define a transcriptional network that mediates CD8+ T cell exhaustion. We show that the high-mobility group (HMG)-box transcription factors TOX and TOX2, as well as members of the NR4A family of nuclear receptors, are targets of the calcium/calcineurin-regulated transcription factor NFAT, even in the absence of its partner AP-1 (FOS-JUN). Using a previously established CAR T cell model, we show that TOX and TOX2 are highly induced in CD8+ CAR+ PD-1high TIM3high ("exhausted") tumor-infiltrating lymphocytes (CAR TILs), and CAR TILs deficient in both TOX and TOX2 (Tox DKO) are more effective than wild-type (WT), TOX-deficient, or TOX2-deficient CAR TILs in suppressing tumor growth and prolonging survival of tumor-bearing mice. Like NR4A-deficient CAR TILs, Tox DKO CAR TILs show increased cytokine expression, decreased expression of inhibitory receptors, and increased accessibility of regions enriched for motifs that bind activation-associated nuclear factor κB (NFκB) and basic region-leucine zipper (bZIP) transcription factors. These data indicate that Tox and Nr4a transcription factors are critical for the transcriptional program of CD8+ T cell exhaustion downstream of NFAT. We provide evidence for positive regulation of NR4A by TOX and of TOX by NR4A, and suggest that disruption of TOX and NR4A expression or activity could be promising strategies for cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocyte Depletion , Transcription Factors/metabolism , Animals , Immunotherapy , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/therapy , Protein Binding , RNA, Messenger/genetics , Transcription Factors/genetics , Tumor Microenvironment
9.
Nat Commun ; 10(1): 2011, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31043609

ABSTRACT

TET enzymes oxidize 5-methylcytosine to 5-hydroxymethylcytosine and other oxidized methylcytosines in DNA. Here we examine the role of TET proteins in regulatory T (Treg) cells. Tet2/3fl/flFoxp3Cre mice lacking Tet2 and Tet3 in Treg cells develop inflammatory disease, and Treg cells from these mice show altered expression of Treg signature genes and upregulation of genes involved in cell cycle, DNA damage and cancer. In littermate mice with severe inflammation, both CD4+Foxp3+ and CD4+Foxp3- cells show strong skewing towards Tfh/Th17 phenotypes. Wild-type Treg cells in mixed bone marrow chimeras and in Tet2/3fl/flFoxp3WT/Cre heterozygous female mice are unable to rescue the aberrant properties of Tet2/3fl/flFoxp3Cre Treg cells. Treg cells from Tet2/3fl/flFoxp3Cre mice tend to lose Foxp3 expression, and transfer of total CD4+ T cells isolated from Tet2/3fl/flFoxp3Cre mice could elicit inflammatory disease in fully immunocompetent mice. Together, these data indicate that Tet2 and Tet3 are guardians of Treg cell stability and immune homeostasis.


Subject(s)
DNA-Binding Proteins/metabolism , Inflammation/immunology , Proto-Oncogene Proteins/metabolism , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , Bone Marrow Transplantation , Colitis , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Dioxygenases , Disease Models, Animal , Female , Humans , Inflammation/genetics , Inflammation/pathology , Male , Mice , Mice, Knockout , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/transplantation , Transplantation Chimera
10.
Sci Immunol ; 4(34)2019 04 26.
Article in English | MEDLINE | ID: mdl-31028100

ABSTRACT

TET enzymes are dioxygenases that promote DNA demethylation by oxidizing the methyl group of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Here, we report a close correspondence between 5hmC-marked regions, chromatin accessibility and enhancer activity in B cells, and a strong enrichment for consensus binding motifs for basic region-leucine zipper (bZIP) transcription factors at TET-responsive genomic regions. Functionally, Tet2 and Tet3 regulate class switch recombination (CSR) in murine B cells by enhancing expression of Aicda, which encodes the activation-induced cytidine deaminase (AID) enzyme essential for CSR. TET enzymes deposit 5hmC, facilitate DNA demethylation, and maintain chromatin accessibility at two TET-responsive enhancer elements, TetE1 and TetE2, located within a superenhancer in the Aicda locus. Our data identify the bZIP transcription factor, ATF-like (BATF) as a key transcription factor involved in TET-dependent Aicda expression. 5hmC is not deposited at TetE1 in activated Batf-deficient B cells, indicating that BATF facilitates TET recruitment to this Aicda enhancer. Our study emphasizes the importance of TET enzymes for bolstering AID expression and highlights 5hmC as an epigenetic mark that captures enhancer dynamics during cell activation.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Cytidine Deaminase/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/metabolism , Gene Expression Regulation/immunology , Proto-Oncogene Proteins/metabolism , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Basic-Leucine Zipper Transcription Factors/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Cells, Cultured , Cytidine Deaminase/immunology , DNA Demethylation , DNA-Binding Proteins/genetics , Dioxygenases/genetics , Genetic Loci/genetics , Immunoglobulin Class Switching/genetics , Lymphocyte Activation/genetics , Mice , Mice, Transgenic , Primary Cell Culture , Proto-Oncogene Proteins/genetics , Response Elements/genetics
11.
Nat Immunol ; 18(8): 940-950, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28628092

ABSTRACT

Therapies that boost the anti-tumor responses of cytotoxic T lymphocytes (CTLs) have shown promise; however, clinical responses to the immunotherapeutic agents currently available vary considerably, and the molecular basis of this is unclear. We performed transcriptomic profiling of tumor-infiltrating CTLs from treatment-naive patients with lung cancer to define the molecular features associated with the robustness of anti-tumor immune responses. We observed considerable heterogeneity in the expression of molecules associated with activation of the T cell antigen receptor (TCR) and of immunological-checkpoint molecules such as 4-1BB, PD-1 and TIM-3. Tumors with a high density of CTLs showed enrichment for transcripts linked to tissue-resident memory cells (TRM cells), such as CD103, and CTLs from CD103hi tumors displayed features of enhanced cytotoxicity. A greater density of TRM cells in tumors was predictive of a better survival outcome in lung cancer, and this effect was independent of that conferred by CTL density. Here we define the 'molecular fingerprint' of tumor-infiltrating CTLs and identify potentially new targets for immunotherapy.


Subject(s)
Adenocarcinoma/immunology , Carcinoma, Squamous Cell/immunology , Head and Neck Neoplasms/immunology , Immunologic Memory/immunology , Lung Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , T-Lymphocytes, Cytotoxic/immunology , Adenocarcinoma/mortality , Adult , Aged , Aged, 80 and over , Antigens, CD/genetics , Carcinoma, Squamous Cell/mortality , Female , Gene Expression Profiling , Hepatitis A Virus Cellular Receptor 2/genetics , Humans , Immunotherapy , Integrin alpha Chains/genetics , Lung Neoplasms/mortality , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Middle Aged , Prognosis , Programmed Cell Death 1 Receptor/genetics , Receptors, Antigen, T-Cell/genetics , Squamous Cell Carcinoma of Head and Neck , Survival Rate , T-Lymphocytes, Cytotoxic/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics
12.
Nat Commun ; 7: 13426, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27848966

ABSTRACT

Asthma and autoimmune disease susceptibility has been strongly linked to genetic variants in the 17q21 haploblock that alter the expression of ORMDL3; however, the molecular mechanisms by which these variants perturb gene expression and the cell types in which this effect is most prominent are unclear. We found several 17q21 variants overlapped enhancers present mainly in primary immune cell types. CD4+ T cells showed the greatest increase (threefold) in ORMDL3 expression in individuals carrying the asthma-risk alleles, where ORMDL3 negatively regulated interleukin-2 production. The asthma-risk variants rs4065275 and rs12936231 switched CTCF-binding sites in the 17q21 locus, and 4C-Seq assays showed that several distal cis-regulatory elements upstream of the disrupted ZPBP2 CTCF-binding site interacted with the ORMDL3 promoter region in CD4+ T cells exclusively from subjects carrying asthma-risk alleles. Overall, our results suggested that T cells are one of the most prominent cell types affected by 17q21 variants.


Subject(s)
Asthma/genetics , Asthma/immunology , CCCTC-Binding Factor/metabolism , Chromosomes, Human, Pair 17/genetics , Genetic Predisposition to Disease , Interleukin-2/biosynthesis , Polymorphism, Single Nucleotide/genetics , T-Lymphocytes/metabolism , B-Lymphocytes/metabolism , Base Sequence , Binding Sites/genetics , Cells, Cultured , Enhancer Elements, Genetic/genetics , Humans , Introns/genetics , Promoter Regions, Genetic/genetics , Protein Binding , Risk Factors
13.
Nat Immunol ; 17(6): 728-39, 2016 06.
Article in English | MEDLINE | ID: mdl-27089380

ABSTRACT

Natural killer T cells (NKT cells) have stimulatory or inhibitory effects on the immune response that can be attributed in part to the existence of functional subsets of NKT cells. These subsets have been characterized only on the basis of the differential expression of a few transcription factors and cell-surface molecules. Here we have analyzed purified populations of thymic NKT cell subsets at both the transcriptomic level and epigenomic level and by single-cell RNA sequencing. Our data indicated that despite their similar antigen specificity, the functional NKT cell subsets were highly divergent populations with many gene-expression and epigenetic differences. Therefore, the thymus 'imprints' distinct gene programs on subsets of innate-like NKT cells that probably impart differences in proliferative capacity, homing, and effector functions.


Subject(s)
Gene Expression Regulation , Immunity, Innate , Lymphocyte Subsets/immunology , Natural Killer T-Cells/immunology , Thymus Gland/immunology , Animals , Antigens, CD1d/metabolism , Cell Movement/genetics , Cell Proliferation/genetics , Cells, Cultured , Epigenesis, Genetic , Gene Expression Regulation/immunology , Jumonji Domain-Containing Histone Demethylases/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...