Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 3330, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28611437

ABSTRACT

Promiscuity can drive the evolution of sexual conflict before and after mating occurs. Post mating, the male ejaculate can selfishly manipulate female physiology, leading to a chemical arms race between the sexes. Theory suggests that drift and sexually antagonistic coevolution can cause allopatric populations to evolve different chemical interactions between the sexes, thereby leading to postmating reproductive barriers and speciation. There is, however, little empirical evidence supporting this form of speciation. We tested this theory by creating an experimental evolutionary model of Drosophila melanogaster populations undergoing different levels of interlocus sexual conflict. We found that allopatric populations under elevated sexual conflict show assortative mating, indicating premating reproductive isolation. Further, these allopatric populations also show reduced copulation duration and sperm defense ability when mating happens between individuals across populations compared to that within the same population, indicating postmating prezygotic isolation. Sexual conflict can cause reproductive isolation in allopatric populations through the coevolution of chemical (postmating prezygotic) as well as behavioural (premating) interactions between the sexes. Thus, to our knowledge, we provide the first comprehensive evidence of postmating (as well as premating) reproductive isolation due to sexual conflict.


Subject(s)
Biological Coevolution , Reproductive Isolation , Sexual Behavior, Animal , Animals , Drosophila melanogaster/genetics , Female , Male , Models, Genetic , Reproduction
2.
PLoS One ; 11(4): e0153629, 2016.
Article in English | MEDLINE | ID: mdl-27093599

ABSTRACT

BACKGROUND: In Drosophila melanogaster the fitness of males depends on a broad array of reproductive traits classified as pre- and post-copulatory traits. Exposure to cold stress, can reduce sperm number, male mating ability and courtship behavior. Therefore, it is expected that the adaptation to cold stress will involve changes in pre- and post-copulatory traits. Such evolution of reproductive traits in response to cold stress is not well studied. METHODS: We selected replicate populations of D. melanogaster for resistance to cold shock. Over 37-46 generations of selection, we investigated pre- and post-copulatory traits such as mating latency, copulation duration, mating frequency, male fertility, fitness (progeny production) and sperm competitive ability in male flies subjected to cold shock and those not subjected to cold shock. RESULTS: We found that post cold shock, the males from the selected populations had a significantly lower mating latency along with, higher mating frequency, fertility, sperm competitive ability and number of progeny relative to the control populations. CONCLUSION: While most studies of experimental evolution of cold stress resistance have documented the evolution of survivorship in response to selection, our study clearly shows that adaptation to cold stress involves rapid changes in the pre- and post-copulatory traits. Additionally, improved performances under stressful conditions need not necessarily trade-off with performance under benign conditions.


Subject(s)
Adaptation, Physiological/physiology , Copulation/physiology , Drosophila melanogaster/physiology , Animals , Biological Evolution , Cold Temperature , Fertility/physiology , Male , Phenotype , Reproduction/physiology , Spermatozoa/physiology
3.
BMC Evol Biol ; 13: 212, 2013 Sep 28.
Article in English | MEDLINE | ID: mdl-24073883

ABSTRACT

BACKGROUND: Interlocus conflict predicts (a) evolution of traits, beneficial to males but detrimental to females and (b) evolution of aging and life-span under the influence of the cost of bearing these traits. However, there are very few empirical investigations shedding light on these predictions. Those that do address these issues, mostly reported response of male reproductive traits or the lack of it and do not address the life-history consequence of such evolution. Here, we test both the above mentioned predictions using experimental evolution on replicate populations of Drosophila melanogaster. We present responses observed after >45 generations of altered levels of interlocus conflict (generated by varying the operational sex ratio). RESULTS: Males from the male biased (high conflict, M-regime) regime evolved higher spontaneous locomotor activity and courtship frequency. Females exposed to these males were found to have higher mortality rate. Males from the female biased regime (low conflict, F-regime) did not evolve altered courtship frequency and activity. However, progeny production of females continuously exposed to F-males was significantly higher than the progeny production of females exposed to M-males indicating that the F-males are relatively benign towards their mates. We found that males from male biased regime lived shorter compared to males from the female biased regime. CONCLUSION: F-males (evolving under lower levels of sexual conflict) evolved decreased mate harming ability indicating the cost of maintenance of the suit of traits that cause mate-harm. The M-males (evolving under higher levels sexual conflict) caused higher female mortality indicating that they had evolved increased mate harming ability, possibly as a by product of increased reproduction related activity. There was a correlated evolution of life-history of the M and F-males. M-regime males lived shorter compared to the males from F-regime, possibly due to the cost of investing more in reproductive traits. In combination, these results suggest that male reproductive traits and life-history traits can evolve in response to the altered levels of interlocus sexual conflict.


Subject(s)
Drosophila melanogaster/physiology , Animals , Biological Evolution , Courtship , Female , Longevity , Male , Phenotype , Reproduction , Sex Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...