Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(23): 34271-34281, 2024 May.
Article in English | MEDLINE | ID: mdl-38702483

ABSTRACT

The southwest coast of India experiences frequent Indian oil sardine (IOS) nearshore aggregation events, especially in the coastal waters off Kerala. These ephemeral dense IOS aggregation events are known as "Sardine Run". To investigate the reason and provide a scientific basis for these sporadic events, satellite/model-derived physical, meteorological, and biological parameters were analysed. Sea Surface Temperature during a majority of events was in the range of 26-29 °C, agreeing with the reported temperature conditions for IOS in the Arabian Sea. Additionally, a marginal lowering of SST as an effect of precipitation before most of the events might have attracted IOS towards the near-coastal waters in addition to the phytoplankton diet availability, resulting in the aggregation event. However, different scenarios also depicted coastal warming and probable hypoxic conditions in degrading IOS habitat and resulting in beach aggregation events. During most of the IOS aggregation events, the wind and surface current direction was alongshore/coastward, which complemented the propagation of live IOS shoals towards the beach.


Subject(s)
Environmental Monitoring , India , Animals , Phytoplankton , Seawater/chemistry , Ecosystem
2.
J Environ Manage ; 354: 120477, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38417362

ABSTRACT

The Indian coastal waters are stressed due to a multitude of factors, such as the discharge of industrial effluents, urbanization (municipal sewage), agricultural runoff, and river discharge. The coastal waters along the eastern and western seaboard of India exhibit contrasting characteristics in terms of seasonality, the magnitude of river influx, circulation pattern, and degree of anthropogenic activity. Therefore, understanding these processes and forecasting their occurrence is highly necessary to secure the health of coastal waters, habitats, marine resources, and the safety of tourists. This article introduces an integrated buoy-satellite based Water Quality Nowcasting System (WQNS) to address the unique challenges of water quality monitoring in Indian coastal waters and to boost the regional blue economy. The Indian National Centre for Ocean Information Services (INCOIS) has launched a first-of-its-kind WQNS, and positioned the buoys at two important locations along the east (Visakhapatnam) and west (Kochi) coast of India, covering a range of environmental conditions and tourist-intensive zones. These buoys are equipped with different physical-biogeochemical sensors, data telemetry systems, and integration with satellite-based observations for real-time data transmission to land. The sensors onboard these buoys continuously measure 22 water quality parameters, including surface current (speed and direction), salinity, temperature, pH, dissolved oxygen, phycocyanin, phycoerythrin, Coloured Dissolved Organic Matter, chlorophyll-a, turbidity, dissolved methane, hydrocarbon (crude and refined), scattering, pCO2 (water and air), and inorganic macronutrients (nitrite, nitrate, ammonium, phosphate, silicate). This real-time data is transmitted to a central processing facility at INCOIS, and after necessary quality control, the data is disseminated through the INCOIS website. Preliminary results from the WQNS show promising outcomes, including the short-term changes in the water column oxic and hypoxic regimes within a day in coastal waters off Kochi during the monsoon period, whereas effluxing of high levels of CO2 into the atmosphere associated with the mixing of water, driven by local depression in the coastal waters off Visakhapatnam. The system has demonstrated its ability to detect changes in the water column properties due to episodic events and mesoscale processes. Additionally, it offers valuable data for research, management, and policy development related to coastal water quality.


Subject(s)
Ecosystem , Water Quality , India , Oceans and Seas , United Nations , Environmental Monitoring , Seawater/chemistry
3.
Sci Rep ; 11(1): 13448, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34188247

ABSTRACT

Occurrence of phytoplankton bloom in the northern Arabian Sea (NAS) during the winter monsoon is perplexing. The convective mixing leads to a deeper and well-oxygenated (> 95% saturation) mixed layer. We encountered low chlorophyll conditions though the nutrient conditions were favorable for a bloom. The mean ratio of silicate (Si) to DIN (Dissolved Inorganic Nitrogen: nitrate + nitrite + ammonium) in the euphotic zone was 0.52 indicating a "silicate-stressed" condition for the proliferation of diatoms. Also, the euphotic depth was much shallower (~ 49 m) than the mixed layer (~ 110 m) suggesting the Sverdrup critical depth limitation in the NAS. We show that the bloom in this region initiates only when the mixed layer shoals towards the euphotic zone. Our observations further suggest that two primary factors, the stoichiometric ratio of nutrients, especially the Si/DIN ratio, in the mixed layer and re-stratification of the upper water column, govern the phytoplankton blooming in NAS during the later winter monsoon. The important finding of the present study is that the Sverdrup's critical depth limitation gives rise to the observed low chl-a concentration in the NAS, despite having enough nutrients.

4.
Mar Pollut Bull ; 160: 111708, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33181968

ABSTRACT

A baseline investigation of the chromatographic characterization of phytoplankton pigments with complementing microscopy was conducted in Mahanadi estuary, Chilika lagoon, and coastal waters off Gopalpur along the east coast of India. Marker pigments specific to different phytoplankton groups have been discerned in these contrasting coastal ecosystems. A total of 16 phytoplankton pigments were identified. Irrespective of seasons, Chilika lagoon was characterized by a high concentration of zeaxanthin, indicating the predominance of picocyanobacteria. Zeaxanthin and fucoxanthin were the major diagnostic pigments in Mahanadi estuary during monsoon and other seasons, respectively. In coastal waters off Gopalpur, algal blooms resulted in a higher concentration of fucoxanthin during pre-monsoon and monsoon season. The pigment ratios were comparatively higher for Chilika lagoon than for Mahanadi estuary and off Gopalpur, irrespective of seasons. The present study highlights the advantages of the chromatography technique in identifying small-sized phytoplankton in coastal ecosystems in comparison to conventional microscopy.


Subject(s)
Ecosystem , Phytoplankton , Bays , Environmental Monitoring , India , Seasons , Seawater
5.
Harmful Algae ; 74: 46-57, 2018 04.
Article in English | MEDLINE | ID: mdl-29724342

ABSTRACT

Intense blooms of the heterotrophic dinoflagellate, green Noctiluca scintillans, have been reported annually in the Northern Arabian Sea since the early 2000s. Although not known to produce organic toxins, these blooms are still categorized as a harmful due to their association with massive fish mortalities. Recent work has attributed these blooms to the vertical expansion of the oxygen minimum zone, driven by cultural eutrophication from major coastal cities in western India. As diatoms are preferred prey of green Noctiluca scintillans, more frequent blooms of this mixotroph will likely impact the productivity of important fisheries in the region. The present study uses a satellite algorithm to determine the distribution of both diatom and green Noctiluca blooms in the Northeastern Arabian Sea from 2009 to 2016. The results from shipboard microscopy of phytoplankton community composition were used to validate the satellite estimates. The satellite algorithm showed 76% accuracy for detection of green Noctiluca and 92% for diatoms. Shipboard measurements and data from biogeochemical-Argo floats were used to assess the relationship between oxygen concentrations and green Noctiluca blooms in the Northeastern Arabian Sea. Regardless of the presence of a Noctiluca bloom, the dissolved oxygen in the photic zone was always >70% saturated, with an average oxygen saturation >90%. The variability in the relative abundance of diatoms and green Noctiluca is not correlated with changes in oxygen concentration. These findings provide no evidence that cultural eutrophication has contributed to the decadal scale shifts in plankton composition in the Northeastern Arabian Sea oceanic waters. Conversely, the climatic warming of surface waters would have intensified stratification, thereby reducing net nutrient flux to the photic zone and decreasing silicate to nitrate ratios (Si:N); both factors that could increase the competitive advantage of the mixotroph, green Noctiluca, over diatoms. If so, the decadal-scale trajectory of phytoplankton community composition in the Northeastern Arabian Sea may be a harbinger of future climate-driven change in other productive oceanic systems.


Subject(s)
Diatoms/physiology , Dinoflagellida/physiology , Environmental Monitoring , Harmful Algal Bloom/physiology , Seawater/chemistry , Anaerobiosis , Indian Ocean , Phytoplankton/physiology , Seasons
6.
Mar Pollut Bull ; 129(1): 222-230, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29680541

ABSTRACT

A comprehensive analysis on the phytoplankton ecology with special reference to different phytoplankton size classes was carried out at green Noctiluca scintillans (hereafter Noctiluca) bloom and non-bloom locations in offshore waters of the northern Arabian Sea. At the bloom locations, green Noctiluca represented a dense mono-specific proliferation with average cell density of 10.16 ±â€¯5.806 × 104 cells-L-1 and relative abundance share of 98.63%. Active photosynthesis through prasinophytic endosymbiont was depicted from net community production magnitude reaching 85.26 mgC/m3/Day under low prey abundance. Parallel swarming of Porpita porpita, a voracious copepod feeder signified the competitive advantage of Noctiluca to have the phytoplankton prey. Average concentration of picophytoplankton biomass was eleven times lower in surface waters of non-bloom stations in comparison to bloom. Higher N:P ratio in subsurface waters of non-bloom stations signified non-utilization of nitrogenous nutrients. Green Noctiluca bloom onset subsequent to diatom rich conditions was evident from spatio-temporal ocean colour satellite imageries.


Subject(s)
Diatoms/growth & development , Dinoflagellida/growth & development , Environmental Monitoring/methods , Phytoplankton/growth & development , Animals , Biomass , Copepoda/growth & development , Diatoms/physiology , Dinoflagellida/physiology , Eutrophication , Indian Ocean , Nitrogen/analysis , Phosphorus/analysis , Photosynthesis/physiology , Phytoplankton/physiology , Satellite Imagery , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...