Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Funct Integr Genomics ; 23(4): 297, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37700096

ABSTRACT

Analysis of natural diversity in wild/cultivated plants can be used to understand the genetic basis for plant breeding programs. Recent advancements in DNA sequencing have expanded the possibilities for genetically altering essential features. There have been several recently disclosed statistical genetic methods for discovering the genes impacting target qualities. One of these useful methods is the genome-wide association study (GWAS), which effectively identifies candidate genes for a variety of plant properties by examining the relationship between a molecular marker (such as SNP) and a target trait. Conventional QTL mapping with highly structured populations has major limitations. The limited number of recombination events results in poor resolution for quantitative traits. Only two alleles at any given locus can be studied simultaneously. Conventional mapping approach fails to work in perennial plants and vegetatively propagated crops. These limitations are sidestepped by association mapping or GWAS. The flexibility of GWAS comes from the fact that the individuals being examined need not be linked to one another, allowing for the use of all meiotic and recombination events to increase resolution. Phenotyping, genotyping, population structure analysis, kinship analysis, and marker-trait association analysis are the fundamental phases of GWAS. With the rapid development of sequencing technologies and computational methods, GWAS is becoming a potent tool for identifying the natural variations that underlie complex characteristics in crops. The use of high-throughput sequencing technologies along with genotyping approaches like genotyping-by-sequencing (GBS) and restriction site associated DNA (RAD) sequencing may be highly useful in fast-forward mapping approach like GWAS. Breeders may use GWAS to quickly unravel the genomes through QTL and association mapping by taking advantage of natural variances. The drawbacks of conventional linkage mapping can be successfully overcome with the use of high-resolution mapping and the inclusion of multiple alleles in GWAS.


Subject(s)
Genome-Wide Association Study , Trees , Humans , Plant Breeding , Chromosome Mapping , Alleles , Crops, Agricultural
3.
Front Genet ; 14: 1204585, 2023.
Article in English | MEDLINE | ID: mdl-37719711

ABSTRACT

Crop improvement programmes began with traditional breeding practices since the inception of agriculture. Farmers and plant breeders continue to use these strategies for crop improvement due to their broad application in modifying crop genetic compositions. Nonetheless, conventional breeding has significant downsides in regard to effort and time. Crop productivity seems to be hitting a plateau as a consequence of environmental issues and the scarcity of agricultural land. Therefore, continuous pursuit of advancement in crop improvement is essential. Recent technical innovations have resulted in a revolutionary shift in the pattern of breeding methods, leaning further towards molecular approaches. Among the promising approaches, marker-assisted selection, QTL mapping, omics-assisted breeding, genome-wide association studies and genome editing have lately gained prominence. Several governments have progressively relaxed their restrictions relating to genome editing. The present review highlights the evolutionary and revolutionary approaches that have been utilized for crop improvement in a bid to produce climate-resilient crops observing the consequence of climate change. Additionally, it will contribute to the comprehension of plant breeding succession so far. Investing in advanced sequencing technologies and bioinformatics will deepen our understanding of genetic variations and their functional implications, contributing to breakthroughs in crop improvement and biodiversity conservation.

5.
Mol Biol Rep ; 49(8): 8007-8023, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35661970

ABSTRACT

Globally, about 20% of calories (energy) come from wheat. In some countries, it is more than 70%. More than 2 billion people are at risk for zinc deficiency and even more, people are at risk of iron deficiency, nearly a quarter of all children underage group of 5 are physically and cognitively stunted, and lack of dietary zinc is a major contributing factor. Biofortified wheat with elevated levels of zinc and iron has several potential advantages as a delivery vehicle for micronutrients in the diets of resource-poor consumers who depend on cereal-based diets. The conventional breeding strategies have been successful in the introduction of novel alleles for grain Zn and Fe that led to the release of competitive Zn enriched wheat varieties in South Asia. The major challenge over the next few decades will be to maintain the rates of genetic gains for grain yield along with increased grain Zn/Fe concentration to meet the food and nutritional security challenges. Therefore, to remain competitive, the performance of Zn-enhanced lines/varieties must be equal or superior to that of current non-biofortified elite lines/varieties. Since both yield and Zn content are invisible and quantitatively inherited traits except few intermediate effect QTL regions identified for grain Zn, increased breeding efforts and new approaches are required to combine them at high frequency, ensuring that Zn levels are steadily increased to the required levels across the breeding pipelines. The current review article provides a comprehensive list of genomic regions for enhancing grain Zn and Fe concentrations in wheat including key candidate gene families such NAS, ZIP, VLT, ZIFL, and YSL. Implementing forward breeding by taking advantage of the rapid cycling trait pipeline approaches would simultaneously introgress high Zn and Fe QTL into the high Zn and normal elite lines, further increasing Zn and Fe concentrations.


Subject(s)
Biofortification , Triticum , Child , Edible Grain/genetics , Genomics , Humans , Iron , Plant Breeding , Triticum/genetics , Zinc
6.
Planta ; 256(2): 24, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35767119

ABSTRACT

Legumes, being angiosperm's third-largest family as well as the second major crop family, contributes beyond 33% of human dietary proteins. The advent of the global food crisis owing to major climatic concerns leads to nutritional deprivation, hunger and hidden hunger especially in developing and underdeveloped nations. Hence, in the wake of promoting sustainable agriculture and nutritional security, apart from the popular legumes, the inclusion of lesser-known and understudied local crop legumes called orphan legumes in the farming systems of various tropical and sub-tropical parts of the world is indeed a need of the hour. Despite possessing tremendous potentialities, wide adaptability under diverse environmental conditions, and rich in nutritional and nutraceutical values, these species are still in a neglected and devalued state. Therefore, a major re-focusing of legume genetics, genomics, and biology is much crucial in pursuance of understanding the yield constraints, and endorsing underutilized legume breeding programs. Varying degrees of importance to these crops do exist among researchers of developing countries in establishing the role of orphan legumes as future crops. Under such circumstances, this article assembles a comprehensive note on the necessity of promoting these crops for further investigations and sustainable legume production, the exploitation of various orphan legume species and their potencies. In addition, an attempt has been made to highlight various novel genetic, molecular, and omics approaches for the improvement of such legumes for enhancing yield, minimizing the level of several anti-nutritional factors, and imparting biotic and abiotic stress tolerance. A significant genetic enhancement through extensive research in 'omics' areas is the absolute necessity to transform them into befitting candidates for large-scale popularization around the globe.


Subject(s)
Fabaceae , Agriculture , Crops, Agricultural/genetics , Fabaceae/genetics , Genomics , Plant Breeding , Vegetables
7.
Front Plant Sci ; 13: 817500, 2022.
Article in English | MEDLINE | ID: mdl-35620694

ABSTRACT

Abscisic acid (ABA) is a plant growth regulator known for its functions, especially in seed maturation, seed dormancy, adaptive responses to biotic and abiotic stresses, and leaf and bud abscission. ABA activity is governed by multiple regulatory pathways that control ABA biosynthesis, signal transduction, and transport. The transport of the ABA signaling molecule occurs from the shoot (site of synthesis) to the fruit (site of action), where ABA receptors decode information as fruit maturation begins and is significantly promoted. The maximum amount of ABA is exported by the phloem from developing fruits during seed formation and initiation of fruit expansion. In the later stages of fruit ripening, ABA export from the phloem decreases significantly, leading to an accumulation of ABA in ripening fruit. Fruit growth, ripening, and senescence are under the control of ABA, and the mechanisms governing these processes are still unfolding. During the fruit ripening phase, interactions between ABA and ethylene are found in both climacteric and non-climacteric fruits. It is clear that ABA regulates ethylene biosynthesis and signaling during fruit ripening, but the molecular mechanism controlling the interaction between ABA and ethylene has not yet been discovered. The effects of ABA and ethylene on fruit ripening are synergistic, and the interaction of ABA with other plant hormones is an essential determinant of fruit growth and ripening. Reaction and biosynthetic mechanisms, signal transduction, and recognition of ABA receptors in fruits need to be elucidated by a more thorough study to understand the role of ABA in fruit ripening. Genetic modifications of ABA signaling can be used in commercial applications to increase fruit yield and quality. This review discusses the mechanism of ABA biosynthesis, its translocation, and signaling pathways, as well as the recent findings on ABA function in fruit development and ripening.

8.
Theor Appl Genet ; 135(11): 3875-3895, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35267056

ABSTRACT

KEY MESSAGE: Improving crop resistance against insect pests is crucial for ensuring future food security. Integrating genomics with modern breeding methods holds enormous potential in dissecting the genetic architecture of this complex trait and accelerating crop improvement. Insect resistance in crops has been a major research objective in several crop improvement programs. However, the use of conventional breeding methods to develop high-yielding cultivars with sustainable and durable insect pest resistance has been largely unsuccessful. The use of molecular markers for identification and deployment of insect resistance quantitative trait loci (QTLs) can fastrack traditional breeding methods. Till date, several QTLs for insect pest resistance have been identified in field-grown crops, and a few of them have been cloned by positional cloning approaches. Genome editing technologies, such as CRISPR/Cas9, are paving the way to tailor insect pest resistance loci for designing crops for the future. Here, we provide an overview of diverse defense mechanisms exerted by plants in response to insect pest attack, and review recent advances in genomics research and genetic improvements for insect pest resistance in major field crops. Finally, we discuss the scope for genomic breeding strategies to develop more durable insect pest resistant crops.


Subject(s)
Gene Editing , Genomics , Animals , Insecta
9.
Biology (Basel) ; 11(2)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35205141

ABSTRACT

Breeding crops in a conventional way demands considerable time, space, inputs for selection, and the subsequent crossing of desirable plants. The duration of the seed-to-seed cycle is one of the crucial bottlenecks in the progress of plant research and breeding. In this context, speed breeding (SB), relying mainly on photoperiod extension, temperature control, and early seed harvest, has the potential to accelerate the rate of plant improvement. Well demonstrated in the case of long-day plants, the SB protocols are being extended to short-day plants to reduce the generation interval time. Flexibility in SB protocols allows them to align and integrate with diverse research purposes including population development, genomic selection, phenotyping, and genomic editing. In this review, we discuss the different SB methodologies and their application to hasten future plant improvement. Though SB has been extensively used in plant phenotyping and the pyramiding of multiple traits for the development of new crop varieties, certain challenges and limitations hamper its widespread application across diverse crops. However, the existing constraints can be resolved by further optimization of the SB protocols for critical food crops and their efficient integration in plant breeding pipelines.

10.
Mol Biol Rep ; 49(6): 5787-5803, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35064401

ABSTRACT

Cultivated modern maize (Zea mays L.) originated through the continuous process of domestication from its wild progenitors. Today, maize is considered as the most important cereal crop which is extensively cultivated in all parts of the world. Maize shows remarkable genotypic and phenotypic diversity which makes it an ideal model species for crop genetic research. However, intensive breeding and artificial selection of desired agronomic traits greatly narrow down the genetic bases of maize. This reduction in genetic diversity among cultivated maize led to increase the chance of more attack of biotic stress as climate changes hampering the maize grain production globally. Maize germplasm requires to integrate both durable multiple-diseases and multiple insect-pathogen resistance through tapping the unexplored resources of maize landraces. Revisiting the landraces seed banks will provide effective opportunities to transfer the resistant genes into the modern cultivars. Here, we describe the maize domestication process and discuss the unique genes from wild progenitors which potentially can be utilized for disease resistant in maize. We also focus on the genetics and disease resistance mechanism of various genes against maize biotic stresses and then considered the different molecular breeding tools for gene transfer and advanced high resolution mapping for gene pyramiding in maize lines. At last, we provide an insight for targeting identified key genes through CRISPR/Cas9 genome editing system to enhance the maize resilience towards biotic stress.


Subject(s)
Disease Resistance , Zea mays , Disease Resistance/genetics , Edible Grain , Genotype , Phenotype , Plant Breeding , Zea mays/genetics
11.
Front Plant Sci ; 13: 1048217, 2022.
Article in English | MEDLINE | ID: mdl-36743560

ABSTRACT

Genetic improvement of temperate fruit and nut crops through conventional breeding methods is not sufficient alone due to its extreme time-consuming, cost-intensive, and hard-to-handle approach. Again, few other constraints that are associated with these species, viz., their long juvenile period, high heterozygosity, sterility, presence of sexual incompatibility, polyploidy, etc., make their selection and improvement process more complicated. Therefore, to promote precise and accurate selection of plants based on their genotypes, supplement of advanced biotechnological tools, viz., molecular marker approaches along with traditional breeding methods, is highly required in these species. Different markers, especially the molecular ones, enable direct selection of genomic regions governing the trait of interest such as high quality, yield, and resistance to abiotic and biotic stresses instead of the trait itself, thus saving the overall time and space and helping screen fruit quality and other related desired traits at early stages. The availability of molecular markers like SNP (single-nucleotide polymorphism), DArT (Diversity Arrays Technology) markers, and dense molecular genetic maps in crop plants, including fruit and nut crops, led to a revelation of facts from genetic markers, thus assisting in precise line selection. This review highlighted several aspects of the molecular marker approach that opens up tremendous possibilities to reveal valuable information about genetic diversity and phylogeny to boost the efficacy of selection in temperate fruit crops through genome sequencing and thus cultivar improvement with respect to adaptability and biotic and abiotic stress resistance in temperate fruit and nut species.

SELECTION OF CITATIONS
SEARCH DETAIL
...