Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Antonie Van Leeuwenhoek ; 117(1): 75, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700529

ABSTRACT

Biogenic nanoparticles (NPs) have emerged as promising therapeutic formulations in effective drug delivery. Despite of various positive attributes, these NPs are often conjugated with various cytotoxic organic fluorophores for bioimaging, thereby reducing its effectiveness as a potential carrier. Herein, we aim to formulate biogenic fluorescent pigmented polyhydroxybutyrate (PHB) NPs from Rhodanobacter sp. strain KT31 (OK001852) for drug delivery. The bacterial strain produced 0.5 g L-1 of polyhydroxyalkanoates (PHAs) from 2.04 g L-1 of dry cell weight (DCW) under optimised conditions via submerged fermentation. Further, structural, thermal, and morphological charactersiation of the extracted PHAs was conducted using advance analytical technologies. IR spectra at 1719.25 cm-1 confirmed presence of C = O functional group PHB. NMR and XRD analysis validated the chemical structure and crystallinity of PHB. TG-DTA revealed Tm (168 °C), Td (292 °C), and Xc (35%) of the PHB. FE-SEM imaging indicated rough surface of the PHB film and the biodegradability was confirmed from open windro composting. WST1 assay showed no significant cell death (> 50%) from 100 to 500 µg/mL, endorsing non-cytotoxic nature of PHB. PHB NPs were uniform, smooth and spherical with size distribution and mean zeta potential 44.73 nm and 0.5 mV. IR and XRD peaks obtained at 1721.75 cm-1 and 48.42 Å denoted C = O and crystalline nature of PHB. Cell proliferation rate of PHB NPs was quite significant at 50 µg/mL, establishing the non-cytotoxic nature of NPs. Further, in vitro efficacy of the PHB NPs needs to be evaluated prior to the biomedical applications.


Subject(s)
Nanoparticles , Polyhydroxyalkanoates , Prohibitins , Nanoparticles/chemistry , Polyhydroxyalkanoates/chemistry , Polyhydroxyalkanoates/metabolism , Drug Delivery Systems , Hydroxybutyrates/chemistry , Hydroxybutyrates/metabolism , Humans , Rhodospirillaceae/metabolism , Rhodospirillaceae/chemistry , Drug Carriers/chemistry
2.
Int Microbiol ; 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37676443

ABSTRACT

Reclamation of chromium-contaminated soil by bacteria is a big confront concerning to soil health restoration, food safety, and environmental protection. Herein, the chromium-resistant Bacillus aryabhattai CTSI-07 (MG757377) showed resistance to 1000 and 300 ppm of Cr(VI) in nutrient rich Luria Bertani (LB) and nutrient-deficient sucrose low phosphate (SLP) medium, respectively. It reduced 96.7% of Cr(VI) from contaminated soil in the presence of 100 ppm of Mg within 96 h under optimized conditions. Furthermore, Cr(VI) reduction by the bacteria was validated by Fourier transform infrared spectroscopic (FTIR) and X-ray diffraction (XRD) analysis. Besides Cr(VI) reduction, the bacterial strain also showed plant growth promoting traits like N2 fixation and indole acetic acid (IAA) production. On the other hand, transmission electron microscopy (TEM) imaging confirmed polyhydroxyalkanoates' (PHAs) granule accumulation and 0.5 g/l of PHAs was extracted from bacterial cell using SLP medium. Infra-red (IR) spectra and proton nuclear magnetic resonance (1H NMR) chemical shift patterns established the PHAs as polyhydroxybutyrate (PHB). Melting (Tm) and thermal degradation (Td) temperature of the PHB were 169 °C and 275 °C, respectively, as evident from thermogravimetry differential thermal analysis (TG-DTA). Atomic force microscopic (AFM) imaging depicted that the PHB film surface was rough and regular. Furthermore, the multi-metal-resistant, plant growth-promoting, and PHB-producing bacteria could reduce 99.82% of Cr(VI) from contaminated soil within 120 days in pot culture. Thus, it can be used for long-term reclamation of chromium-contaminated soil to restore soil health, provide food safety, and environmental protection.

3.
Antonie Van Leeuwenhoek ; 116(6): 521-529, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37027093

ABSTRACT

PHAs (polyhydroxyalkanoates) are the bio-polyester synthesized by different aerobic and anaerobic bacteria as energy storage granule. However, its synthesis by anaerobes or facultative anaerobes is an imperative part of their physiology via assimilating broad range of substrates than aerobes. Thus, three Gram positive facultative anaerobic PHAs producers viz., Enterococcus sp. FM3, Actinomyces sp. CM4 and Bacillus sp. FM5 were selected. Among them, Bacillus sp. FM5 showed higher cell biomass production in MSM (mineral salt medium) comprised of glucose & peptone as carbon & nitrogen source at pH 9, temperature 37 °C, inoculum 10% and incubation period 72 h. Under optimized condition, Bacillus sp. FM5 produced 0.89 and 1.5 g l-1 of PHAs through submerged and solid-state fermentation in anoxic condition. In-silico analysis confirmed the facultative anaerobic PHAs producing bacteria as Bacillus cereus FM5. IR spectra of PHAs illustrated a strong absorption peak at 1718.50 cm-1 representing carbonyl ester (C=O) functional group of PHB (polyhydroxybutyrate), belonging to the family PHAs. It is the first report demonstrating PHAs production by Bacillus cereus FM5 in anoxic condition through different bioprocess technology, which may pave the way in the arena of further biopolymer research.


Subject(s)
Bacillus cereus , Bacillus , Fermentation , Bacteria, Anaerobic
4.
Sens Int ; 2: 100073, 2021.
Article in English | MEDLINE | ID: mdl-34766048

ABSTRACT

The on-going SARS-CoV-2 causing COVID-19 discovered in December 2019, is responsible for a global pandemic. The virus belongs to the group of enveloped viruses containing linear, non-segmented, single stranded, positive sense strand RNA as genetic material. Already six different strains Coronaviruses are being reported to infect humans, however the seventh one is genetically similar to the SARS Coronavirus and termed as SARS-CoV-2. Specific crucial macromolecules such as membrane, nuclear, spike and enveloped proteins including HE esterase are present in the virus that interact with ACE2, APN, NEU-5, 9SC2 moiety of humans plays significant role in occurrence and transmission of the devastating disease. This review article summarizes the structure, histopathology, transmission of novel Coronavirus, its symptoms with preventive measures & currently prescribed drugs. Though various drugs and therapy have been administrated or implemented to restrict COVID-19, however it is imperative to develop an antidote against SARS-CoV-2 by the scientific or research community to save life.

5.
Biochem Biophys Rep ; 12: 206-213, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29090283

ABSTRACT

The microbially derived polyhydroxyalkanoates biopolymers could impact the global climate scenario by replacing the conventional non-degradable, petrochemical-based polymer. The biogenesis, characterization and properties of PHAs by Bacillus species using renewable substrates have been elaborated by many for their wide applications. On the other hand Bacillus species are advantageous over other bacteria due to their abundance even in extreme ecological conditions, higher growth rates even on cheap substrates, higher PHAs production ability, and the ease of extracting the PHAs. Bacillus species possess hydrolytic enzymes that can be exploited for economical PHAs production. This review summarizes the recent trends in both non-growth and growth associated PHAs production by Bacillus species which may provide direction leading to future research towards this growing quest for biodegradable plastics, one more critical step ahead towards sustainable development.

6.
ACS Omega ; 1(6): 1081-1103, 2016 Dec 31.
Article in English | MEDLINE | ID: mdl-30023502

ABSTRACT

Carbonic anhydrase (CA) is a family of metalloenzymes that has the potential to sequestrate carbon dioxide (CO2) from the environment and reduce pollution. The goal of this study is to apply protein engineering to develop a modified CA enzyme that has both higher stability and activity and hence could be used for industrial purposes. In the current study, we have developed an in silico method to understand the molecular basis behind the stability of CA. We have performed comparative molecular dynamics simulation of two homologous α-CA, one of thermophilic origin (Sulfurihydrogenibium sp.) and its mesophilic counterpart (Neisseria gonorrhoeae), for 100 ns each at 300, 350, 400, and 500 K. Comparing the trajectories of two proteins using different stability-determining factors, we have designed a highly thermostable version of mesophilic α-CA by introducing three mutations (S44R, S139E, and K168R). The designed mutant α-CA maintains conformational stability at high temperatures. This study shows the potential to develop industrially stable variants of enzymes while maintaining high activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...