Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36677596

ABSTRACT

Metal phosphorus trichalcogenide (MPX3) materials have aroused substantial curiosity in the evolution of electrochemical storage devices due to their environment-friendliness and advantageous X-P synergic effects. The interesting intercalation properties generated due to the presence of wide van der Waals gaps along with high theoretical specific capacity pose MPX3 as a potential host electrode in lithium batteries. Herein, we synthesized two-dimensional iron thio-phosphate (FePS3) nanoflakes via a salt-template synthesis method, using low-temperature time synthesis conditions in single step. The electrochemical application of FePS3 has been explored through the construction of a high-capacity lithium primary battery (LPB) coin cell with FePS3 nanoflakes as the cathode. The galvanostatic discharge studies on the assembled LPB exhibit a high specific capacity of ~1791 mAh g-1 and high energy density of ~2500 Wh Kg-1 along with a power density of ~5226 W Kg-1, some of the highest reported values, indicating FePS3's potential in low-cost primary batteries. A mechanistic insight into the observed three-staged discharge mechanism of the FePS3-based primary cell resulting in the high capacity is provided, and the findings are supported via post-mortem analyses at the electrode scale, using both electrochemical- as well as photoelectron spectroscopy-based studies.

2.
Chem Commun (Camb) ; 55(70): 10416-10419, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31403646

ABSTRACT

The feasibility of developing a rechargeable iron ion battery is demonstrated for the first time. A rechargeable iron ion battery using mild steel as the anode and vanadium pentoxide as the cathode is demonstrated to deliver a specific capacity of 207 mA h g-1 at 30 mA g-1. Using ex situ characterisation techniques, reversible intercalation of iron ions into a host structure is confirmed.

SELECTION OF CITATIONS
SEARCH DETAIL
...