Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22277364

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remains a formidable challenge to worldwide public health. The receptor binding domain (RBD) of the SARS-CoV-2 spike protein is a hotspot for mutations, reflecting its critical role at the ACE2 interface during viral entry. We comprehensively investigated the impact of RBD mutations, including 6 variants of concern (VOC) or interest (Alpha, Beta, Gamma, Delta, Kappa and Omicron) and 33 common point mutations, on IgG recognition, Fc{gamma}R-engagement, and ACE2-binding inhibition in plasma from BNT162b2-vaccine recipients (two-weeks following second dose) and mild-to-moderate COVID-19 convalescent subjects using our custom bead-based 39-plex array. We observed that IgG-recognition and Fc{gamma}R-binding antibodies were most profoundly decreased against Beta and Omicron RBDs, as well as point mutations G446S, found in Omicron, and N501T, a key mutation found in animal adapted SARS-CoV-2 viruses. Measurement of RBD-ACE2 binding affinity via Biolayer Interferometry showed all VOC RBDs have enhanced affinity to human ACE2. Furthermore we demonstrate that human ACE2 polymorphisms, E35K (rs1348114695), K26R (rs4646116) and S19P (rs73635825), have altered binding kinetics to the RBD of VOCs potentially affecting virus-host interaction and thereby host susceptibility.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22270359

ABSTRACT

Following infection with SARS-CoV-2, virus-specific antibodies are generated which can both neutralise virions and clear infection via Fc effector functions. The importance of IgG antibodies for protection and control of SARS-CoV-2 has been extensively reported. In comparison, other antibody isotypes including IgA have been poorly characterized. Here we characterized plasma IgA from 41 early convalescent COVID-19 subjects for neutralisation and Fc effector functions. We find that convalescent plasma IgA from >60% of the cohort have the capacity to inhibit the interaction between wild-type RBD and ACE2. Furthermore, a third of the cohort induced stronger IgA-mediated inhibition of RBD binding to ACE2 than IgG, when tested at equivalent concentrations. Plasma IgA and IgG from the cohort, broadly recognize similar RBD epitopes and showed similar ability to inhibit ACE2 from binding 22 of 23 different prevalent RBD proteins with single amino acid mutations. Plasma IgA was largely incapable of mediating antibody-dependent phagocytosis in comparison to plasma IgG. Overall, convalescent plasma IgA contributes to neutralisation towards wild-type RBD and various RBD single mutants in most subjects, although this response is heterogeneous and less potent than IgG.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21261479

ABSTRACT

ObjectivesSARS-CoV-2 can be transmitted by aerosols and the ocular surface may be an important route of transmission. Little is known about protective antibody responses to SARS-CoV-2 in tears after infection or vaccination. We analysed SARS-CoV-2 specific IgG and IgA responses in human tears after either COVID-19 infection or vaccination. MethodsWe recruited 16 subjects with COVID-19 infection an average of 7 months previously and 15 subjects before and 2 weeks after Comirnaty (Pfizer-BioNtech) vaccination. Plasma, saliva and basal tears were collected. Pre-pandemic plasma, saliva and basal tears from 11 individuals were included as healthy controls. Antibody responses to 5 SARS-CoV-2 antigens were measured via multiplex. ResultsIgG antibodies to Spike and Nucleoprotein were detected in tears, saliva and plasma from subjects with prior SARS-CoV-2 infection in comparison to uninfected controls. While RBD-specific antibodies were detected in plasma, minimal RBD-specific antibodies were detected in tears and saliva. In contrast, high levels of IgG antibodies to Spike and RBD, but not Nucleoprotein, were induced in tears, saliva and plasma of subjects receiving 2 doses of the Comirnaty vaccine. Increased levels of IgA1 and IgA2 antibodies to SARS-CoV-2 antigens were detected in plasma following infection or vaccination, but were unchanged in tears and saliva. ConclusionBoth infection and vaccination induce SARS-CoV-2-specific IgG antibodies in tears. RBD-specific IgG antibodies in tears were induced by vaccination but were not present 7 months post-infection. This suggests neutralising antibodies may be low in the tears late following infection.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20248143

ABSTRACT

The capacity of antibodies to engage with innate and adaptive immune cells via the Fc region is important in preventing and controlling many infectious diseases, and is likely critical in SARS-CoV-2 infection. The evolution of such antibodies during convalescence from COVID-19 is largely unknown. We developed novel assays to measure Fc-dependent antibody functions against SARS-CoV-2 spike (S)-expressing cells in serial samples from a cohort of 53 subjects primarily with mild-moderate COVID-19, out to a maximum of 149 days post-infection. We found that S-specific antibodies capable of engaging dimeric Fc{gamma}RIIa and Fc{gamma}RIIIa decayed linearly over time. S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declined linearly as well, in line with the decay of S-specific IgG. Although there was significant decay in S-specific plasma ADCC and ADP activity, they remained readily detectable by all assays in 94% of our cohort at the last timepoint studied, in contrast with neutralisation activity which was only detectable in 70% of our cohort by the last timepoint. Our results suggest that Fc effector functions such as ADCC and ADP could contribute to the durability of SARS-CoV-2 immunity, particularly late in convalescence when neutralising antibodies have waned. Understanding the protective potential of antibody Fc effector functions is critical for defining the durability of immunity generated by infection or vaccination.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20191205

ABSTRACT

The durability of infection-induced SARS-CoV-2 immunity has major implications for public health mitigation and vaccine development. Animal studies1,2 and the scarcity of confirmed re-infection3 suggests immune protection is likely, although the durability of this protection is debated. Lasting immunity following acute viral infection requires maintenance of both serum antibody and antigen-specific memory B and T lymphocytes and is notoriously pathogen specific, ranging from life-long for smallpox or measles4, to highly transient for common cold coronaviruses (CCC)5. Neutralising antibody responses are a likely correlate of protective immunity and exclusively recognise the viral spike (S) protein, predominantly targeting the receptor binding domain (RBD) within the S1 sub-domain6. Multiple reports describe waning of S-specific antibodies in the first 2-3 months following infection7-12. However, extrapolation of early linear trends in decay might be overly pessimistic, with several groups reporting that serum neutralisation is stable over time in a proportion of convalescent subjects8,12-17. While SARS-CoV-2 specific B and T cell responses are readily induced by infection6,13,18-24, the longitudinal dynamics of these key memory populations remains poorly resolved. Here we comprehensively profiled antibody, B and T cell dynamics over time in a cohort recovered from mild-moderate COVID-19. We find that binding and neutralising antibody responses, together with individual serum clonotypes, decay over the first 4 months post-infection, as expected, with a similar decline in S-specific CD4+ and circulating T follicular helper (cTFH) frequencies. In contrast, S-specific IgG+ memory B cells (MBC) consistently accumulate over time, eventually comprising a significant fraction of circulating MBC. Modelling of the concomitant immune kinetics predicts maintenance of serological neutralising activity above a titre of 1:40 in 50% of convalescent subjects to 74 days, with probable additive protection from B and T cells. Overall, our study suggests SARS-CoV-2 immunity after infection is likely to be transiently protective at a population level. SARS-CoV-2 vaccines may require greater immunogenicity and durability than natural infection to drive long-term protection.

SELECTION OF CITATIONS
SEARCH DETAIL
...