Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Anal Chem ; 95(40): 14879-14888, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37756255

ABSTRACT

Detection of small molecule metabolites (SMM), particularly those involved in energy metabolism using MALDI-mass spectrometry imaging (MSI), is challenging due to factors including ion suppression from other analytes present (e.g., proteins and lipids). One potential solution to enhance SMM detection is to remove analytes that cause ion suppression from tissue sections before matrix deposition through solvent washes. Here, we systematically investigated solvent treatment conditions to improve SMM signal and preserve metabolite localization. Washing with acidic methanol significantly enhances the detection of phosphate-containing metabolites involved in energy metabolism. The improved detection is due to removing lipids and highly polar metabolites that cause ion suppression and denaturing proteins that release bound phosphate-containing metabolites. Stable isotope infusions of [13C6]nicotinamide coupled to MALDI-MSI ("Iso-imaging") in the kidney reveal patterns that indicate blood vessels, medulla, outer stripe, and cortex. We also observed different ATP:ADP raw signals across mouse kidney regions, consistent with regional differences in glucose metabolism favoring either gluconeogenesis or glycolysis. In mouse muscle, Iso-imaging using [13C6]glucose shows high glycolytic flux from infused circulating glucose in type 1 and 2a fibers (soleus) and relatively lower glycolytic flux in type 2b fiber type (gastrocnemius). Thus, improved detection of phosphate-containing metabolites due to acidic methanol treatment combined with isotope tracing provides an improved way to probe energy metabolism with spatial resolution in vivo.


Subject(s)
Glycolysis , Methanol , Mice , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Glucose , Lipids , Solvents , Isotopes , Phosphates , Lasers
2.
Proc Natl Acad Sci U S A ; 120(21): e2301215120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37186827

ABSTRACT

Plasma metabolite concentrations and labeling enrichments are common measures of organismal metabolism. In mice, blood is often collected by tail snip sampling. Here, we systematically examined the effect of such sampling, relative to gold-standard sampling from an in-dwelling arterial catheter, on plasma metabolomics and stable isotope tracing. We find marked differences between the arterial and tail circulating metabolome, which arise from two major factors: handling stress and sampling site, whose effects were deconvoluted by taking a second arterial sample immediately after tail snip. Pyruvate and lactate were the most stress-sensitive plasma metabolites, rising ~14 and ~5-fold. Both acute handling stress and adrenergic agonists induce extensive, immediate production of lactate, and modest production of many other circulating metabolites, and we provide a reference set of mouse circulatory turnover fluxes with noninvasive arterial sampling to avoid such artifacts. Even in the absence of stress, lactate remains the highest flux circulating metabolite on a molar basis, and most glucose flux into the TCA cycle in fasted mice flows through circulating lactate. Thus, lactate is both a central player in unstressed mammalian metabolism and strongly produced in response to acute stress.


Subject(s)
Glucose , Metabolomics , Animals , Mice , Glucose/metabolism , Citric Acid Cycle , Lactic Acid/metabolism , Pyruvic Acid/metabolism , Carbon Isotopes/metabolism , Isotope Labeling , Mammals/metabolism
3.
Nature ; 614(7947): 349-357, 2023 02.
Article in English | MEDLINE | ID: mdl-36725930

ABSTRACT

Tissues derive ATP from two pathways-glycolysis and the tricarboxylic acid (TCA) cycle coupled to the electron transport chain. Most energy in mammals is produced via TCA metabolism1. In tumours, however, the absolute rates of these pathways remain unclear. Here we optimize tracer infusion approaches to measure the rates of glycolysis and the TCA cycle in healthy mouse tissues, Kras-mutant solid tumours, metastases and leukaemia. Then, given the rates of these two pathways, we calculate total ATP synthesis rates. We find that TCA cycle flux is suppressed in all five primary solid tumour models examined and is increased in lung metastases of breast cancer relative to primary orthotopic tumours. As expected, glycolysis flux is increased in tumours compared with healthy tissues (the Warburg effect2,3), but this increase is insufficient to compensate for low TCA flux in terms of ATP production. Thus, instead of being hypermetabolic, as commonly assumed, solid tumours generally produce ATP at a slower than normal rate. In mouse pancreatic cancer, this is accommodated by the downregulation of protein synthesis, one of this tissue's major energy costs. We propose that, as solid tumours develop, cancer cells shed energetically expensive tissue-specific functions, enabling uncontrolled growth despite a limited ability to produce ATP.


Subject(s)
Adenosine Triphosphate , Breast Neoplasms , Citric Acid Cycle , Deceleration , Lung Neoplasms , Neoplasm Metastasis , Pancreatic Neoplasms , Animals , Mice , Adenosine Triphosphate/biosynthesis , Adenosine Triphosphate/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Citric Acid Cycle/physiology , Energy Metabolism , Glycolysis , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Organ Specificity , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Protein Biosynthesis
4.
Nat Methods ; 19(2): 223-230, 2022 02.
Article in English | MEDLINE | ID: mdl-35132243

ABSTRACT

Isotope tracing has helped to determine the metabolic activities of organs. Methods to probe metabolic heterogeneity within organs are less developed. We couple stable-isotope-labeled nutrient infusion to matrix-assisted laser desorption ionization imaging mass spectrometry (iso-imaging) to quantitate metabolic activity in mammalian tissues in a spatially resolved manner. In the kidney, we visualize gluconeogenic flux and glycolytic flux in the cortex and medulla, respectively. Tricarboxylic acid cycle substrate usage differs across kidney regions; glutamine and citrate are used preferentially in the cortex and fatty acids are used in the medulla. In the brain, we observe spatial gradations in carbon inputs to the tricarboxylic acid cycle and glutamate under a ketogenic diet. In a carbohydrate-rich diet, glucose predominates throughout but in a ketogenic diet, 3-hydroxybutyrate contributes most strongly in the hippocampus and least in the midbrain. Brain nitrogen sources also vary spatially; branched-chain amino acids contribute most in the midbrain, whereas ammonia contributes in the thalamus. Thus, iso-imaging can reveal the spatial organization of metabolic activity.


Subject(s)
Brain/metabolism , Carbon Isotopes/pharmacokinetics , Kidney/metabolism , Nitrogen Isotopes/pharmacokinetics , Animals , Diet , Enzymes , Gluconeogenesis , Glutamic Acid/biosynthesis , Glycolysis , Male , Mice, Inbred C57BL , Molecular Imaging , Single-Cell Analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Tricarboxylic Acids/metabolism , Workflow
5.
Methods Mol Biol ; 2437: 61-75, 2022.
Article in English | MEDLINE | ID: mdl-34902140

ABSTRACT

Metabolomic measurements can provide functional readouts of cellular states and phenotypes. Here, we present a protocol for single-cell metabolomics that permits direct untargeted detection of a broad number of metabolites under ambient conditions, without the need for sample processing, and with high confidence in the discovery and identification of the molecular formulas for detected metabolites. This protocol describes combining fiber-based laser ablation electrospray ionization (f-LAESI) with a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer (21T-FTICR-MS) to obtain high confidence molecular formula information about detected metabolites. The f-LAESI source utilizes mid-infrared laser ablation through a sharp optical fiber tip, affording direct ambient analysis of cells without the need for sample processing. Using the 21T-FTICR-MS as a mass analyzer enabled measurement of the isotopic fine structure (IFS) for numerous metabolites simultaneously from single cells, and the IFSs were in turn computationally processed to rapidly determine the corresponding elemental compositions. This metabolomics technique complements other single cell omics measurement methods, helping to resolve complex molecular interactions that take place within cells unattainable from single cell transcriptomic and proteomics methods.


Subject(s)
Metabolomics , Fourier Analysis , Lasers , Single-Cell Analysis , Spectrometry, Mass, Electrospray Ionization
6.
Methods Mol Biol ; 2437: 89-98, 2022.
Article in English | MEDLINE | ID: mdl-34902142

ABSTRACT

Mass spectrometry imaging (MSI) plays an expanding role in the label-free spatial mapping of hundreds of molecules simultaneously. Currently, matrix-assisted laser desorption ionization (MALDI) is among the most widely adopted MSI techniques. However, matrix application can impact the fidelity of spatial distributions, and matrix selection and related spectral interferences in the low mass range can lead to biased molecular coverage. Nanophotonic ionization from silicon nanopost arrays (NAPA) is an emerging matrix-free MSI platform with enhanced sensitivity for several molecular classes, for example, neutral lipids and biooligomers. Here, we describe a protocol with minimal sample preparation for NAPA-MSI of metabolites, lipids, and biooligomers from biological tissues.


Subject(s)
Lasers , Silicon , Lipids , Molecular Imaging , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
7.
Angew Chem Int Ed Engl ; 60(16): 9071-9077, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33529427

ABSTRACT

Mass spectrometry imaging (MSI) enables simultaneous spatial mapping for diverse molecules in biological tissues. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) has been a mainstream MSI method for a wide range of biomolecules. However, MALDI-MSI of biological homopolymers used for energy storage and molecular feedstock is limited by, e.g., preferential ionization for certain molecular classes. Matrix-free nanophotonic ionization from silicon nanopost arrays (NAPAs) is an emerging laser desorption ionization (LDI) platform with ultra-trace sensitivity and molecular imaging capabilities. Here, we show complementary analysis and MSI of polyhydroxybutyric acid (PHB), polyglutamic acid (PGA), and polysaccharide oligomers in soybean root nodule sections by NAPA-LDI and MALDI. For PHB, number and weight average molar mass, polydispersity, and oligomer size distributions across the tissue section and in regions of interest were characterized by NAPA-LDI-MSI.


Subject(s)
Glycine max/chemistry , Hydroxybutyrates/analysis , Nanostructures/chemistry , Polyesters/analysis , Polyglutamic Acid/analysis , Polysaccharides/analysis , Silicon/chemistry , Molecular Imaging , Plant Roots/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
8.
Plant J ; 103(5): 1937-1958, 2020 08.
Article in English | MEDLINE | ID: mdl-32410239

ABSTRACT

The establishment of the nitrogen-fixing symbiosis between soybean and Bradyrhizobium japonicum is a complex process. To document the changes in plant metabolism as a result of symbiosis, we utilized laser ablation electrospray ionization-mass spectrometry (LAESI-MS) for in situ metabolic profiling of wild-type nodules, nodules infected with a B. japonicum nifH mutant unable to fix nitrogen, nodules doubly infected by both strains, and nodules formed on plants mutated in the stearoyl-acyl carrier protein desaturase (sacpd-c) gene, which were previously shown to have an altered nodule ultrastructure. The results showed that the relative abundance of fatty acids, purines, and lipids was significantly changed in response to the symbiosis. The nifH mutant nodules had elevated levels of jasmonic acid, correlating with signs of nitrogen deprivation. Nodules resulting from the mixed inoculant displayed similar, overlapping metabolic distributions within the sectors of effective (fix+ ) and ineffective (nifH mutant, fix- ) endosymbionts. These data are inconsistent with the notion that plant sanctioning is cell autonomous. Nodules lacking sacpd-c displayed an elevation of soyasaponins and organic acids in the central necrotic regions. The present study demonstrates the utility of LAESI-MS for high-throughput screening of plant phenotypes. Overall, nodules disrupted in the symbiosis were elevated in metabolites related to plant defense.


Subject(s)
Bradyrhizobium/metabolism , Glycine max/microbiology , Metabolomics/methods , Root Nodules, Plant/microbiology , Carbon/metabolism , Mutation/genetics , Nitrogen/metabolism , Nitrogen Fixation , Root Nodules, Plant/metabolism , Glycine max/metabolism , Spectrometry, Mass, Electrospray Ionization , Symbiosis
9.
Anal Chem ; 92(10): 7289-7298, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32314907

ABSTRACT

Characterization of the metabolic heterogeneity in cell populations requires the analysis of single cells. Most current methods in single-cell analysis rely on cell manipulation, potentially altering the abundance of metabolites in individual cells. A small sample volume and the chemical diversity of metabolites are additional challenges in single-cell metabolomics. Here, we describe the combination of fiber-based laser ablation electrospray ionization (f-LAESI) with 21 T Fourier transform ion cyclotron resonance mass spectrometry (21TFTICR-MS) for in situ single-cell metabolic profiling in plant tissue. Single plant cells infected by bacteria were selected and sampled directly from the tissue without cell manipulation through mid-infrared ablation with a fine optical fiber tip for ionization by f-LAESI. Ultrahigh performance 21T-FTICR-MS enabled the simultaneous capture of isotopic fine structures (IFSs) for 47 known and 11 unknown compounds, thus elucidating their elemental compositions from single cells and providing information on metabolic heterogeneity in the cell population.


Subject(s)
Glycine max/cytology , Glycine max/metabolism , Metabolomics , Single-Cell Analysis , Bradyrhizobium/metabolism , Oxygen Isotopes , Potassium Isotopes , Glycine max/microbiology , Spectrometry, Mass, Electrospray Ionization
10.
Anal Chem ; 92(10): 7299-7306, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32343130

ABSTRACT

In plants, long-distance transport of chemicals from source to sink takes place through the transfer of sap inside complex trafficking systems. Access to this information provides insight into the physiological responses that result from the interactions between the organism and its environment. In vivo analysis offers minimal perturbation to the physiology of the organism, thus providing information that represents the native physiological state more accurately. Here we describe capillary microsampling with electrospray ionization mass spectrometry (ESI-MS) for the in vivo analysis of xylem sap directly from plants. Initially, fast MS profiling was performed by ESI from the whole sap exuding from wounds of living plants in their native environment. This sap, however, originated from the xylem and phloem and included the cytosol of damaged cells. Combining capillary microsampling with ESI-MS enabled targeted sampling of the xylem sap and single parenchymal cells in the pith, thereby differentiating their chemical compositions. With this method we analyzed soybean plants infected by nitrogen-fixing bacteria and uninfected plants to investigate the effects of symbiosis on chemical transport through the sap. Infected plants exhibited higher abundances for certain nitrogen-containing metabolites in their sap, namely allantoin, allantoic acid, hydroxymethylglutamate, and methylene glutamate, compared to uninfected plants. Using capillary microsampling, we localized these compounds to the xylem, which indicated their transport from the roots to the upper parts of the plant. Differences between metabolite levels in sap from the infected and uninfected plants indicated that the transport of nitrogen-containing and other metabolites is regulated depending on the source of nitrogen supply.


Subject(s)
Allantoin/analysis , Glutamates/analysis , Glycine max/chemistry , Urea/analogs & derivatives , Xylem/chemistry , Nitrogen-Fixing Bacteria/isolation & purification , Glycine max/microbiology , Spectrometry, Mass, Electrospray Ionization , Urea/analysis
11.
Anal Chem ; 91(8): 5028-5035, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30821434

ABSTRACT

Mass spectrometry (MS) is an indispensable analytical tool to capture the array of metabolites within complex biological systems. However, conventional MS-based metabolomic workflows require extensive sample processing and separation resulting in limited throughput and potential alteration of the native molecular states in these systems. Ambient ionization methods, capable of sampling directly from tissues, circumvent some of these issues but require high-performance MS to resolve the molecular complexity within these samples. Here, we demonstrate a unique combination of laser ablation electrospray ionization (LAESI) coupled with a 21 tesla Fourier transform ion cyclotron resonance (21T-FTICR) for direct MS analysis and imaging applications. This analytical platform provides isotopic fine structure information directly from biological tissues, enabling the rapid assignment of molecular formulas and delivering a higher degree of confidence for molecular identification.


Subject(s)
Glycine max/metabolism , Lasers , Limit of Detection , Molecular Imaging/methods , Spectrometry, Mass, Electrospray Ionization , Equipment Design , Molecular Imaging/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...