Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
PLoS One ; 18(5): e0285769, 2023.
Article in English | MEDLINE | ID: mdl-37200315

ABSTRACT

A serially dependent Poisson process with time-varying zero-inflation is proposed. Such formulations have the potential to model count data time series arising from phenomena such as infectious diseases that ebb and flow over time. The model assumes that the intensity of the Poisson process evolves according to a generalized autoregressive conditional heteroscedastic (GARCH) formulation and allows the zero-inflation parameter to vary over time and be governed by a deterministic function or by an exogenous variable. Both the expectation maximization (EM) and the maximum likelihood estimation (MLE) approaches are presented as possible estimation methods. A simulation study shows that both parameter estimation methods provide good estimates. Applications to two real-life data sets on infant deaths due to influenza show that the proposed integer-valued GARCH (INGARCH) model provides a better fit in general than existing zero-inflated INGARCH models. We also extended a non-linear INGARCH model to include zero-inflation and an exogenous input. This extended model performed as well as our proposed model with respect to some criteria, but not with respect to all.


Subject(s)
Models, Statistical , Humans , Poisson Distribution , Computer Simulation , Time Factors
2.
IEEE Trans Neural Netw Learn Syst ; 32(10): 4323-4333, 2021 10.
Article in English | MEDLINE | ID: mdl-32941155

ABSTRACT

In this article, a novel learning methodology is introduced for the problem of classification in the context of high-dimensional data. In particular, the challenges introduced by high-dimensional data sets are addressed by formulating a L1 regularized zero-sum game where optimal sparsity is estimated through a two-player game between the penalty coefficients/sparsity parameters and the deep neural network weights. In order to solve this game, a distributed learning methodology is proposed where additional variables are utilized to derive layerwise cost functions. Finally, an alternating minimization approach developed to solve the problem where the Nash solution provides optimal sparsity and compensation through the classifier. The proposed learning approach is implemented in a parallel and distributed environment through a novel computational algorithm. The efficiency of the approach is demonstrated both theoretically and empirically with nine data sets.

3.
IEEE Trans Neural Netw Learn Syst ; 31(5): 1763-1770, 2020 05.
Article in English | MEDLINE | ID: mdl-31329564

ABSTRACT

In this brief, heterogeneity and noise in big data are shown to increase the generalization error for a traditional learning regime utilized for deep neural networks (deep NNs). To reduce this error, while overcoming the issue of vanishing gradients, a direct error-driven learning (EDL) scheme is proposed. First, to reduce the impact of heterogeneity and data noise, the concept of a neighborhood is introduced. Using this neighborhood, an approximation of generalization error is obtained and an overall error, comprised of learning and the approximate generalization errors, is defined. A novel NN weight-tuning law is obtained through a layer-wise performance measure enabling the direct use of overall error for learning. Additional constraints are introduced into the layer-wise performance measure to guide and improve the learning process in the presence of noisy dimensions. The proposed direct EDL scheme effectively addresses the issue of heterogeneity and noise while mitigating vanishing gradients and noisy dimensions. A comprehensive simulation study is presented where the proposed approach is shown to mitigate the vanishing gradient problem while improving generalization by 6%.

4.
PLoS One ; 13(2): e0193247, 2018.
Article in English | MEDLINE | ID: mdl-29451904

ABSTRACT

Human exposure to volatile organic compounds (VOCs) via vapor intrusion (VI) is an emerging public health concern with notable detrimental impacts on public health. Phytoforensics, plant sampling to semi-quantitatively delineate subsurface contamination, provides a potential non-invasive screening approach to detect VI potential, and plant sampling is effective and also time- and cost-efficient. Existing VI assessment methods are time- and resource-intensive, invasive, and require access into residential and commercial buildings to drill holes through basement slabs to install sampling ports or require substantial equipment to install groundwater or soil vapor sampling outside the home. Tree-core samples collected in 2 days at the PCE Southeast Contamination Site in York, Nebraska were analyzed for tetrachloroethene (PCE) and results demonstrated positive correlations with groundwater, soil, soil-gas, sub-slab, and indoor-air samples collected over a 2-year period. Because tree-core samples were not collocated with other samples, interpolated surfaces of PCE concentrations were estimated so that comparisons could be made between pairs of data. Results indicate moderate to high correlation with average indoor-air and sub-slab PCE concentrations over long periods of time (months to years) to an interpolated tree-core PCE concentration surface, with Spearman's correlation coefficients (ρ) ranging from 0.31 to 0.53 that are comparable to the pairwise correlation between sub-slab and indoor-air PCE concentrations (ρ = 0.55, n = 89). Strong correlations between soil-gas, sub-slab, and indoor-air PCE concentrations and an interpolated tree-core PCE concentration surface indicate that trees are valid indicators of potential VI and human exposure to subsurface environment pollutants. The rapid and non-invasive nature of tree sampling are notable advantages: even with less than 60 trees in the vicinity of the source area, roughly 12 hours of tree-core sampling with minimal equipment at the PCE Southeast Contamination Site was sufficient to delineate vapor intrusion potential in the study area and offered comparable delineation to traditional sub-slab sampling performed at 140 properties over a period of approximately 2 years.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Environmental Pollutants/analysis , Tetrachloroethylene/analysis , Trees/chemistry , Environmental Biomarkers , Environmental Exposure/analysis , Volatile Organic Compounds/analysis
5.
Environ Sci Technol ; 51(24): 14055-14064, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29182871

ABSTRACT

Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman's coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.


Subject(s)
Soil Pollutants , Soil , Trees , Gases , Groundwater , Humans
6.
Environ Sci Technol ; 51(18): 10369-10378, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28829577

ABSTRACT

Vapor intrusion (VI) by volatile organic compounds (VOCs) in the built environment presents a threat to human health. Traditional VI assessments are often time-, cost-, and labor-intensive; whereas traditional subsurface methods sample a relatively small volume in the subsurface and are difficult to collect within and near structures. Trees could provide a similar subsurface sample where roots act as the "sampler' and are already onsite. Regression models were developed to assess the relation between PCE concentrations in over 500 tree-core samples with PCE concentrations in over 50 groundwater and 1000 soil samples collected from a tetrachloroethylene- (PCE-) contaminated Superfund site and analyzed using gas chromatography. Results indicate that in planta concentrations are significantly and positively related to PCE concentrations in groundwater samples collected at depths less than 20 m (adjusted R2 values greater than 0.80) and in soil samples (adjusted R2 values greater than 0.90). Results indicate that a 30 cm diameter tree characterizes soil concentrations at depths less than 6 m over an area of 700-1600 m2, the volume of a typical basement. These findings indicate that tree sampling may be an appropriate method to detect contamination at shallow depths at sites with VI.


Subject(s)
Environmental Monitoring , Trees/chemistry , Volatile Organic Compounds , Groundwater , Humans , Soil
7.
Ergonomics ; 56(5): 791-802, 2013.
Article in English | MEDLINE | ID: mdl-23514088

ABSTRACT

When selecting a respirator, it is important to understand how employees' motor, visual and cognitive abilities are impacted by the personal protective equipment. This study compares dust, powered-air-purifying and full-face, negative-pressure respirators. Thirty participants performed three varied tasks. Each participant performed each task without a respirator and while wearing the three respirator types. The tasks included a hand tool dexterity test, the Motor-Free Visual Perception Test and the Serial Sevens Test to evaluate fine motor, visual and cognitive performance, respectively. The time required for task completion and the errors made were measured. Analysis showed no significant effect due to respirator use on the task completion time. A significant increase was found in the error rate when participants performed the cognitive test wearing the full-face, negative-pressure respirator. Participants had varying respirator preferences. They indicated a potential for full-face, negative-pressure respirators to negatively affect jobs demanding high cognitive skills such as problem solving and decision-making. PRACTITIONER SUMMARY: while respirators are life-saving personal protective equipment (PPE), they can unintentionally reduce human performance, especially if job characteristics are not considered during PPE selection. An experiment was conducted to compare three respirators (dust respirator, powered-air-purifying respirators and full-face respirator) for varying task types. The full-face respirator was found to affect human cognitive performance negatively.


Subject(s)
Motor Skills , Problem Solving , Respiratory Protective Devices/adverse effects , Vision, Ocular , Adult , Consumer Behavior , Female , Humans , Male , Middle Aged , Task Performance and Analysis , Time Factors , Young Adult
9.
J Biomech Eng ; 112(1): 38-45, 1990 Feb.
Article in English | MEDLINE | ID: mdl-2308302

ABSTRACT

Local surface strains in bone-fascicle-bone subunits from human patellar tendon and anterior and posterior cruciate ligaments were measured between markers using low-speed photography during low rate subfailure testing. A simple stress-strain relationship of the power form was found to describe the bone-to-bone responses up to four percent strain for all three tissue types examined. The regional material behavior were best fit using an inverted strain-stress relationship, however. The power model, fitted to the experimental data, conformed to the expected stress-strain relationship better than either the quadratic or cubic models. With few exceptions, for a given stress, the strains near the proximal and distal bone ends were not significantly different from each other, but were significantly higher than the strains in the tissue midregions. Local strain patterns generally varied among subunits from the same tissue.


Subject(s)
Knee Joint/physiology , Ligaments, Articular/physiology , Tendons/physiology , Adult , Biomechanical Phenomena , Humans , In Vitro Techniques , Male , Patella/physiology , Reference Values , Regression Analysis , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...