Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 108(40): 16657-62, 2011 Oct 04.
Article in English | MEDLINE | ID: mdl-21930911

ABSTRACT

Glucocorticoids (GCs) are used to treat pregnant women at risk for preterm delivery; however, prenatal exposure to GCs may trigger adverse neurological side effects due to reduced neural progenitor cell (NPC) proliferation. Whereas many established cell-cycle regulators impact NPC proliferation, other signaling molecules, such as the gap junction protein connexin-43 (Cx43), also influence proliferation. Gap junction intercellular communication (GJIC) is influenced by GCs in some cells, but such hormone effects have not been examined in coupled stem cells. We found that both continuous and transient exposure of embryonic day 14.5 mouse neurosphere cultures to dexamethasone (DEX) limits proliferation of coupled NPCs, which is manifested by both a reduction in S-phase progression and enhanced cell-cycle exit. A short (i.e., 1-h) DEX treatment also reduced GJIC as measured by live-cell fluorescence recovery after photobleaching, and altered the synchrony of spontaneous calcium transients in coupled NPCs. GC effects on GJIC in NPCs are transcription-independent and mediated through plasma membrane glucocorticoid receptors (GRs). This nongenomic pathway operates through lipid raft-associated GRs via a site-specific, MAPK-dependent phosphorylation of Cx43, which is linked to GR via caveolin-1 (Cav-1) and c-src. Cav-1 is essential for this nongenomic action of GR, as DEX effects on GJIC, Cx43 phosphorylation, and MAPK activation are not observed in Cav-1 knockout NPCs. As transient pharmacologic inhibition of GJIC triggers reduced S-phase progression but not enhanced cell-cycle exit, the nongenomic GR signaling pathway may operate via distinct downstream effectors to alter the proliferative capacity of NPCs.


Subject(s)
Cell Communication/physiology , Gap Junctions/physiology , Glucocorticoids/pharmacology , Neural Stem Cells/physiology , Receptors, Glucocorticoid/metabolism , Animals , Blotting, Western , Caveolin 1/metabolism , Cell Cycle/drug effects , Cell Proliferation/drug effects , Connexin 43/metabolism , Dexamethasone/pharmacology , Fluorescence Recovery After Photobleaching , Mice , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...