Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Caries Res ; 50(2): 151-8, 2016.
Article in English | MEDLINE | ID: mdl-27073873

ABSTRACT

This study aimed to explore the effect of fluoridated toothpastes on biofilm architecture and enamel demineralization in an in vitro biofilm model. Streptococcus mutans was grown on enamel and treated with slurries of commercial toothpastes, containing SnF2 or NaF. Water and chlorhexidine were used as negative and positive controls, respectively. The developed biofilms were imaged and enamel demineralization was measured. SnF2 and NaF toothpaste treatments significantly reduced enamel demineralization, but SnF2 toothpaste was more effective. Only SnF2 toothpaste and chlorhexidine treatments caused reductions on biofilm mass and thickness. In conclusion, this biofilm model was able to differentiate the effects of the SnF2 and NaF toothpastes on biofilm architecture and enamel demineralization.


Subject(s)
Biofilms/drug effects , Dental Enamel/drug effects , Sodium Fluoride/pharmacology , Streptococcus mutans/drug effects , Tin Fluorides/pharmacology , Tooth Demineralization/drug therapy , Toothpastes/pharmacology , Animals , Biofilms/growth & development , Cattle , Chlorhexidine/pharmacology , Dental Enamel/microbiology , Dental Enamel/pathology , Dose-Response Relationship, Drug , Hydrogen-Ion Concentration , Imaging, Three-Dimensional , In Vitro Techniques , Microscopy, Confocal , Saliva/metabolism , Sodium Fluoride/administration & dosage , Streptococcus mutans/growth & development , Tin Fluorides/administration & dosage , Tooth Demineralization/microbiology , Tooth Demineralization/prevention & control , Toothpastes/administration & dosage
2.
PLoS One ; 10(5): e0121835, 2015.
Article in English | MEDLINE | ID: mdl-25946040

ABSTRACT

The amino acid L-arginine inhibits bacterial coaggregation, is involved in cell-cell signaling, and alters bacterial metabolism in a broad range of species present in the human oral cavity. Given the range of effects of L-arginine on bacteria, we hypothesized that L-arginine might alter multi-species oral biofilm development and cause developed multi-species biofilms to disassemble. Because of these potential biofilm-destabilizing effects, we also hypothesized that L-arginine might enhance the efficacy of antimicrobials that normally cannot rapidly penetrate biofilms. A static microplate biofilm system and a controlled-flow microfluidic system were used to develop multi-species oral biofilms derived from pooled unfiltered cell-containing saliva (CCS) in pooled filter-sterilized cell-free saliva (CFS) at 37° C. The addition of pH neutral L-arginine monohydrochloride (LAHCl) to CFS was found to exert negligible antimicrobial effects but significantly altered biofilm architecture in a concentration-dependent manner. Under controlled flow, the biovolume of biofilms (µm(3)/µm(2)) developed in saliva containing 100-500 mM LAHCl were up to two orders of magnitude less than when developed without LAHCI. Culture-independent community analysis demonstrated that 500 mM LAHCl substantially altered biofilm species composition: the proportion of Streptococcus and Veillonella species increased and the proportion of Gram-negative bacteria such as Neisseria and Aggregatibacter species was reduced. Adding LAHCl to pre-formed biofilms also reduced biovolume, presumably by altering cell-cell interactions and causing cell detachment. Furthermore, supplementing 0.01% cetylpyridinium chloride (CPC), an antimicrobial commonly used for the treatment of dental plaque, with 500 mM LAHCl resulted in greater penetration of CPC into the biofilms and significantly greater killing compared to a non-supplemented 0.01% CPC solution. Collectively, this work demonstrates that LAHCl moderates multi-species oral biofilm development and community composition and enhances the activity of CPC. The incorporation of LAHCl into oral healthcare products may be useful for enhanced biofilm control.


Subject(s)
Anti-Bacterial Agents/pharmacology , Arginine/pharmacology , Biofilms/drug effects , Microbiota/drug effects , Saliva/microbiology , Humans
3.
Mol Microbiol ; 97(2): 281-300, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25855127

ABSTRACT

Streptococcus gordonii is an oral commensal and an early coloniser of dental plaque. In vitro, S. gordonii is conditionally auxotrophic for arginine in monoculture but biosynthesises arginine when coaggregated with Actinomyces oris. Here, we investigated the arginine-responsive regulatory network of S. gordonii and the basis for conditional arginine auxotrophy. ArcB, the catabolic ornithine carbamoyltransferase involved in arginine degradation, was also essential for arginine biosynthesis. However, arcB was poorly expressed following arginine depletion, indicating that arcB levels may limit S. gordonii arginine biosynthesis. Arginine metabolism gene expression was tightly co-ordinated by three ArgR/AhrC family regulators, encoded by argR, ahrC and arcR genes. Microarray analysis revealed that > 450 genes were regulated in response to rapid shifts in arginine concentration, including many genes involved in adhesion and biofilm formation. In a microfluidic salivary biofilm model, low concentrations of arginine promoted S. gordonii growth, whereas high concentrations (> 5 mM arginine) resulted in dramatic reductions in biofilm biomass and changes to biofilm architecture. Collectively, these data indicate that arginine metabolism is tightly regulated in S. gordonii and that arginine is critical for gene regulation, cellular growth and biofilm formation. Manipulating exogenous arginine concentrations may be an attractive approach for oral biofilm control.


Subject(s)
Arginine/metabolism , Biofilms/growth & development , Streptococcus gordonii/physiology , Actinomyces/metabolism , Arginine/biosynthesis , Bacterial Adhesion/physiology , Molecular Sequence Data , Ornithine Carbamoyltransferase/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Streptococcus gordonii/genetics , Streptococcus gordonii/growth & development , Streptococcus gordonii/metabolism
4.
J Vis Exp ; (94)2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25490193

ABSTRACT

There are few high-throughput in vitro systems which facilitate the development of multi-species biofilms that contain numerous species commonly detected within in vivo oral biofilms. Furthermore, a system that uses natural human saliva as the nutrient source, instead of artificial media, is particularly desirable in order to support the expression of cellular and biofilm-specific properties that mimic the in vivo communities. We describe a method for the development of multi-species oral biofilms that are comparable, with respect to species composition, to supragingival dental plaque, under conditions similar to the human oral cavity. Specifically, this methods article will describe how a commercially available microfluidic system can be adapted to facilitate the development of multi-species oral biofilms derived from and grown within pooled saliva. Furthermore, a description of how the system can be used in conjunction with a confocal laser scanning microscope to generate 3-D biofilm reconstructions for architectural and viability analyses will be presented. Given the broad diversity of microorganisms that grow within biofilms in the microfluidic system (including Streptococcus, Neisseria, Veillonella, Gemella, and Porphyromonas), a protocol will also be presented describing how to harvest the biofilm cells for further subculture or DNA extraction and analysis. The limits of both the microfluidic biofilm system and the current state-of-the-art data analyses will be addressed. Ultimately, it is envisioned that this article will provide a baseline technique that will improve the study of oral biofilms and aid in the development of additional technologies that can be integrated with the microfluidic platform.


Subject(s)
Bacterial Physiological Phenomena , Biofilms , High-Throughput Screening Assays/methods , Microfluidic Analytical Techniques/methods , High-Throughput Screening Assays/instrumentation , Humans , Microfluidic Analytical Techniques/instrumentation , Saliva/microbiology
5.
J Antimicrob Chemother ; 68(11): 2550-60, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23800904

ABSTRACT

OBJECTIVES: Few model systems are amenable to developing multi-species biofilms in parallel under environmentally germane conditions. This is a problem when evaluating the potential real-world effectiveness of antimicrobials in the laboratory. One such antimicrobial is cetylpyridinium chloride (CPC), which is used in numerous over-the-counter oral healthcare products. The aim of this work was to develop a high-throughput microfluidic system that is combined with a confocal laser scanning microscope (CLSM) to quantitatively evaluate the effectiveness of CPC against oral multi-species biofilms grown in human saliva. METHODS: Twenty-four-channel BioFlux microfluidic plates were inoculated with pooled human saliva and fed filter-sterilized saliva for 20 h at 37°C. The bacterial diversity of the biofilms was evaluated by bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). The antimicrobial/anti-biofilm effect of CPC (0.5%-0.001% w/v) was examined using Live/Dead stain, CLSM and 3D imaging software. RESULTS: The analysis of biofilms by bTEFAP demonstrated that they contained genera typically found in human dental plaque. These included Aggregatibacter, Fusobacterium, Neisseria, Porphyromonas, Streptococcus and Veillonella. Using Live/Dead stain, clear gradations in killing were observed when the biofilms were treated with CPC between 0.5% and 0.001% w/v. At 0.5% (w/v) CPC, 90% of the total signal was from dead/damaged cells. Below this concentration range, less killing was observed. In the 0.5%-0.05% (w/v) range CPC penetration/killing was greatest and biofilm thickness was significantly reduced. CONCLUSIONS: This work demonstrates the utility of a high-throughput microfluidic-CLSM system to grow multi-species oral biofilms, which are compositionally similar to naturally occurring biofilms, to assess the effectiveness of antimicrobials.


Subject(s)
Anti-Infective Agents/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Cetylpyridinium/pharmacology , Dental Plaque/microbiology , Microbial Consortia/drug effects , Microfluidics/methods , Adult , Humans , Microscopy, Confocal , Saliva/metabolism , Saliva/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...