Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21258492

ABSTRACT

AO_SCPLOWBSTRACTC_SCPLOWHigh resolution mobility datasets have become increasingly available in the past few years and have enabled detailed models for infectious disease spread including those for COVID-19. However, there are open questions on how such a mobility data can be used effectively within epidemic models and for which tasks they are best suited. In this paper, we extract a number of graph-based proximity metrics from high resolution cellphone trace data from X-Mode and use it to study COVID-19 epidemic spread in 50 land grant university counties in the US. We present an approach to estimate the effect of mobility on cases by fitting an ODE based model and performing multivariate linear regression to explain the estimated time varying transmissibility. We find that, while mobility plays a significant role, the contribution is heterogeneous across the counties, as exemplified by a subsequent correlation analysis. We subsequently evaluate the metrics utility for case surge prediction defined as a supervised classification problem, and show that the learnt model can predict surges with 95% accuracy and 87% F1-score.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21257836

ABSTRACT

COVID-19 vaccination is being rolled out among the general population in India. Spatial heterogeneities exist in seroprevalence and active infections across India. Using a spatially explicit age-stratified model of Karnataka at the district level, we study three spatial vaccination allocation strategies under different vaccination capacities and a variety of non-pharmaceutical intervention (NPI) scenarios. The models are initialised using on-the-ground datasets that capture reported cases, seroprevalence estimates, seroreversion and vaccine rollout plans. The three vaccination strategies we consider are allocation in proportion to the district populations, allocation in inverse proportion to the seroprevalence estimates, and allocation in proportion to the case-incidence rates during a reference period. The results suggest that the effectiveness of these strategies (in terms of cumulative cases at the end of a four-month horizon) are within 2% of each other, with allocation in proportion to population doing marginally better at the state level. The results suggest that the allocation schemes are robust and thus the focus should be on the easy to implement scheme based on population. Our immunity waning model predicts the possibility of a subsequent resurgence even under relatively strong NPIs. Finally, given a per-day vaccination capacity, our results suggest the level of NPIs needed for the healthcare infrastructure to handle a surge.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20248129

ABSTRACT

Disease dynamics, human mobility, and public policies co-evolve during a pandemic such as COVID-19. Understanding dynamic human mobility changes and spatial interaction patterns are crucial for understanding and forecasting COVID-19 dynamics. We introduce a novel graph-based neural network(GNN) to incorporate global aggregated mobility flows for a better understanding of the impact of human mobility on COVID-19 dynamics as well as better forecasting of disease dynamics. We propose a recurrent message passing graph neural network that embeds spatio-temporal disease dynamics and human mobility dynamics for daily state-level new confirmed cases forecasting. This work represents one of the early papers on the use of GNNs to forecast COVID-19 incidence dynamics and our methods are competitive to existing methods. We show that the spatial and temporal dynamic mobility graph leveraged by the graph neural network enables better long-term forecasting performance compared to baselines.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20236042

ABSTRACT

Reopening of colleges and universities for the Fall semester of 2020 across the United States has caused significant COVID-19 case spikes, requiring reactive responses such as temporary closures and switching to online learning. Until sufficient levels of immunity are reached through vaccination, Institutions of Higher Education will need to balance academic operations with COVID-19 spread risk within and outside the student community. In this work, we study the impact of proximity statistics obtained from high resolution mobility traces in predicting case rate surges in university counties. We focus on 50 land-grant university counties (LGUCs) across the country and show high correlation (PCC > 0.6) between proximity statistics and COVID-19 case rates for several LGUCs during the period around Fall 2020 reopenings. These observations provide a lead time of up to [~]3 weeks in preparing resources and planning containment efforts. We also show how features such as total population, population affiliated with university, median income and case rate intensity could explain some of the observed high correlation. We believe these easily explainable mobility metrics along with other disease surveillance indicators can help universities be better prepared for the Spring 2021 semester.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20123760

ABSTRACT

This work quantifies mobility changes observed during the different phases of the pandemic world-wide at multiple resolutions - county, state, country - using an anonymized aggregate mobility map that captures population flows between geographic cells of size 5 km2. As we overlay the global mobility map with epidemic incidence curves and dates of government interventions, we observe that as case counts rose, mobility fell and has since then seen a slow but steady increase in flows. Further, in order to understand mixing within a region, we propose a new metric to quantify the effect of social distancing on the basis of mobility.Taking two very different countries sampled from the global spectrum, We analyze in detail the mobility patterns of the United States (US) and India. We then carry out a counterfactual analysis of delaying the lockdown and show that a one week delay would have doubled the reported number of cases in the US and India. Finally, we quantify the effect of college students returning back to school for the fall semester on COVID-19 dynamics in the surrounding community. We employ the data from a recent university outbreak (reported on August 16, 2020) to infer possible Reff values and mobility flows combined with daily prevalence data and census data to obtain an estimate of new cases that might arrive on a college campus. We find that maintaining social distancing at existing levels would be effective in mitigating the extra seeding of cases. However, potential behavioral change and increased social interaction amongst students (30% increase in Reff) along with extra seeding can increase the number of cases by 20% over a period of one month in the encompassing county. To our knowledge, this work is the first to model in near real-time, the interplay of human mobility, epidemic dynamics and public policies across multiple spatial resolutions and at a global scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...