Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 54(18): 5861-5, 2015 Jun 20.
Article in English | MEDLINE | ID: mdl-26193040

ABSTRACT

We present an experimental apparatus that allows microsecond-resolved ellipsometric and absorption measurements. The apparatus is based on an optical cavity containing a Dove prism, in which light undergoes total internal reflection (TIR), while the data acquisition is based on software defined radio technology and custom-built drivers. We demonstrate the ability to sense rapid variations in the refractive index above the TIR interface for arbitrarily long times with a temporal resolution of at least 2 µs.

2.
J Phys Chem A ; 117(34): 8175-83, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23713854

ABSTRACT

The photodissociation of nitromethane at 193 nm is reviewed in terms of new stereodynamical information provided by the measurement of the first four Dixon's bipolar moments, ß0(2)(20), ß0(0)(22), ß0(2)(02), and ß0(2)(22), using slice imaging. The measured speed-dependent ß0(2)(20) (directly related with the spatial anisotropy parameter ß) indicates that after one-photon absorption to the S3(2 (1)A″) state by an allowed perpendicular transition, two reaction pathways can compete with similar probability, a direct dissociation process yielding ground-state CH3 and NO2(1 (2)A2) radicals and a indirect dissociation through conical intersections in which NO2 radicals are formed in lower-lying electronic states. A particularly important result from our measurements is that the low recoil energy part of the methyl fragment translational energy distribution presents a contribution with parallel character, irrespective of the experimental conditions employed, that we attribute to parent cluster dissociation. Moreover, the positive values found for the ß0(0)(22) bipolar moment indicates some propensity for the fragment's recoil velocity and angular momentum vectors to be parallel.

3.
J Chem Phys ; 121(15): 7175-86, 2004 Oct 15.
Article in English | MEDLINE | ID: mdl-15473785

ABSTRACT

Rotational state resolved center-of-mass angular scattering and kinetic energy release distributions have been determined for the HCl (v' = 0, j' = 0-6) products of the reaction of chlorine with n-butane using the photon-initiated reaction technique, coupled with velocity-map ion imaging. The angular and kinetic energy release distributions derived from the ion images are very similar to those obtained previously for the Cl plus ethane reaction. The angular distributions are found to shift from forward scattering to more isotropic scattering with increasing HCl rotational excitation. The kinetic energy release distributions indicate that around 30% of the available energy is channeled into internal excitation of the butyl radical products. The data analysis also suggests that H-atom abstraction takes place from both primary and secondary carbon atom sites, with the primary site producing rotationally cold, forward scattered HCl (v' = 0) products, and the secondary site yielding more isotropically scattered HCl (v' = 0) possessing higher rotational excitation. The mechanisms leading to these two product channels are discussed in the light of the present findings, and in comparison with studies of other Cl plus alkane reactions.

4.
J Chem Phys ; 121(15): 7222-7, 2004 Oct 15.
Article in English | MEDLINE | ID: mdl-15473789

ABSTRACT

The orientation and alignment of the (2)P(3/2) and (2)P(1/2) Br photofragments from the photodissociation of HBr is measured at 193 nm in terms of a(q) ((k))(p) parameters, using slice imaging. The A (1)Pi state is excited almost exclusively, and the measured a(q) ((k))(p) parameters and the spin-orbit branching ratio show that the dissociation proceeds predominantly via nonadiabatic transitions to the a (3)Pi and 1 (3)Sigma(+) states. Conservation of angular momentum shows that the electrons of the nascent H atom cofragments (recoiling parallel to the photolysis polarization) are highly spin polarized: about 100% for the Br((2)P(1/2)) channel, and 86% for the Br((2)P(3/2)) channel. A similar analysis is demonstrated for the photodissociation of HCl.

5.
Science ; 300(5627): 1936-8, 2003 Jun 20.
Article in English | MEDLINE | ID: mdl-12817146

ABSTRACT

The production of spin-polarized hydrogen atoms from the photodissociation of hydrogen chloride with circularly polarized 193-nanometer light is inferred from the measurement of the complete angular momentum distributions of ground state Cl(2P3/2)and excited state Cl(2P1/2)cofragments by slice imaging. The experimentally measured and ab initio predicted a q(k) (p)parameters, which describe the single-surface and multiple-surface-interference contributions to the angular momentum distributions, are in excellent agreement. For laser pulses longer than about 0.7 ns, the polarization of the electron and the proton are both 36%.

6.
Phys Rev Lett ; 87(12): 123001, 2001 Sep 17.
Article in English | MEDLINE | ID: mdl-11580502

ABSTRACT

A novel method to measure directly the photofragment alignment from Abel-invertible two-dimensional ion images, as a function of photofragment recoil velocity, is demonstrated for S(1D2) atoms from the photodissociation of carbonyl sulfide at 223 nm. The results are analyzed in terms of coherent and incoherent contributions from two dissociative states, showing that the phase differences of the asymptotic wave functions of the fast and slow recoil-velocity channel are approximately pi/2 and 0, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...