Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Gene ; 893: 147952, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37918550

ABSTRACT

OBJECTIVES: The aim of this pilot study is to identify the genetic factors that contribute to the response of metronomic chemotherapy in head and neck squamous cell carcinoma (HNSCC) patients using whole-exome sequencing (WES). This study would facilitate the identification of predictive biomarkers, which would enable personalized treatment strategies and improve treatment outcomes for patients with HNSCC. MATERIALS AND METHODS: We have selected patients with recurrent head and neck cancer who underwent metronomic chemotherapy. Sequential tumor biopsies were collected from the patients at different stages of treatment to capture the genomic alterations and tumor evolution during metronomic chemotherapy and sequenced using WES. RESULTS: We identified several known HNSCC hallmark genes reported in COSMIC, including KMT2B, NOTCH1, FAT1, TP53, HRAS, CASP8, and CDKN2A. Copy number alteration analysis revealed amplifications and deletions in several oncogenic and tumor suppressor genes. COSMIC Mutational Signature 15 associated with defective DNA mismatch repair was enriched in 73% of HNSCC samples. Further, the comparison of genomic alterations between responders and non-responders identified HRAS gene uniquely mutated in non-responders that could potentially contribute to resistance against metronomic chemotherapy. DISCUSSION: Our findings corroborate the molecular heterogeneity of recurrent HNSCC tumors and establish an association between HRAS mutations and resistance to metronomic chemotherapy, suggesting HRAS as a potential therapeutic target. Combining HRAS inhibitors with metronomic regimens could improve treatment sensitivity in HRAS-mutated HNSCC patients. Further studies are needed to fully elucidate the genomic mechanisms underlying the response to metronomic chemotherapy.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Carcinoma, Squamous Cell/genetics , Exome Sequencing , Pilot Projects , Neoplasm Recurrence, Local , Mutation , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics
4.
Cell Rep ; 40(12): 111390, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36130502

ABSTRACT

Preservation of a small population of cancer stem cells (CSCs) within a heterogeneous carcinoma serves as a paradigm to understand how select cells in a tissue maintain their undifferentiated status. In both embryogenesis and cancer, Snail has been correlated with stemness, but the molecular underpinning of this phenomenon remains largely ill-defined. In models of cutaneous squamous cell carcinoma (cSCC), we discovered a non-epithelial-mesenchymal transition function for the transcription factor Snail in maintaining the stemness of epidermal keratinocytes. Snail-expressing cells secrete the matricellular protein Mindin, which functions in an autocrine fashion to activate a Src-STAT3 pathway to reinforce their stem/progenitor phenotype. This pathway is activated by the engagement of Mindin with the leukocyte-specific integrin, CD11b (ITGAM), which is also unexpectedly expressed by epidermal keratinocytes. Interestingly, disruption of this signaling module in human cSCC attenuates tumorigenesis, suggesting that targeting Mindin would be a promising therapeutic approach to hinder cancer recurrence.


Subject(s)
Carcinoma, Squamous Cell , Skin Neoplasms , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Epithelial Cells/metabolism , Extracellular Matrix Proteins , Humans , Integrins/metabolism , Neoplasm Proteins , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/metabolism , Skin Neoplasms/pathology , Snail Family Transcription Factors/metabolism
5.
J Transl Med ; 20(1): 84, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35148768

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a dynamic and complex cellular process that is known to be hijacked by cancer cells to facilitate invasion, metastasis and therapeutic resistance. Several quantitative measures to assess the interplay between EMT and cancer progression are available, based on large scale genome and transcriptome data. However, these large scale multi-omics studies have repeatedly illustrated a lack of correlation in mRNA and protein abundances that may be influenced by diverse post-translational regulation. Hence, it is imperative to understand how changes in the EMT proteome are associated with the process of oncogenic transformation. To this effect, we developed a parallel reaction monitoring-based targeted proteomics method for quantifying abundances of EMT-associated proteins across cancer cell lines. Our study revealed that quantitative measurement of EMT proteome which enabled a more accurate assessment than transcriptomics data and revealed specific discrepancies against a backdrop of generally strong concordance between proteomic and transcriptomic data. We further demonstrated that changes in our EMT proteome panel might play a role in tumor transformation across cancer types. In future, this EMT panel assay has the potential to be used for clinical samples to guide treatment choices and to congregate functional information for the development and advancing novel therapeutics.


Subject(s)
Epithelial-Mesenchymal Transition , Neoplasms , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Humans , Neoplasms/genetics , Proteome , Proteomics/methods , Transcriptome
8.
Oncotarget ; 11(46): 4358-4363, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33245722

ABSTRACT

Ovarian cancer is common gynaecological malignancy and a leading cause of death among women. Despite the advances in treatment strategies, majority of patients present with recurrence after first- or second-line treatment. Targeted therapy that has proven to be effective in other advanced or metastatic solid tumors have also demonstrated its efficacy in ovarian cancer. Recent studies have shown that the androgen receptor (AR) signalling is involved in pathogenicity and progression of cancer. Current observations suggest AR could be a potential target in managing the disease. In this case report we present a patient with high grade serous ovarian cancer (HGSOC) with multiple relapses with excellent disease control on AR inhibition with bicalutamide.

9.
Oncotarget ; 11(45): 4195-4200, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33227091

ABSTRACT

Periampullary adenocarcinomas are rare neoplasm that originates from the pancreatic head, the ampulla of vater, the distal bile duct or the duodenum. Surgical resection followed by adjuvant therapy is considered as the standard of care treatment for these carcinomas. Despite several advances in diagnostics and therapeutics, only 5% of these patients have an overall survival of five years or more. Currently, there is a dearth of viable therapeutic targets for this disease. The role of HER2 in cancer biology has been studied extensively in several tumour subtypes, and HER2 based targeted therapies have shown to have therapeutic benefits on different cancers. In this case report, we present a case of HER2 positive distal common bile duct carcinoma - a subtype of periampullary carcinoma with multiple relapses where multi-analyte testing with Encyclopedic Tumor Analysis (ETA) (Exacta®) identified amplification and over expression of HER2 gene which was used as a potential target to treat the patient with trastuzumab. Synchronous in vitro chemosensitivity profiling on Circulating Tumor Asscociated Cells (C-TACs) isolated from blood aided us to design the personalized chemotherapeutic regimen with cyclophosphamide and methotrexate. The combination of trastuzumab with cyclophosphamide and methotrexate yielded excellent treatment response with the patient remaining in complete response till the last follow-up. Our study suggests HER2 directed therapy as a potent pathway for treatment in the subset of HER-2 amplified distal common bile duct carcinomas.

10.
Biomolecules ; 10(2)2020 02 04.
Article in English | MEDLINE | ID: mdl-32033228

ABSTRACT

Tumor heterogeneity attributes substantial challenges in determining the treatment regimen. Along with the conventional treatment, such as chemotherapy and radiotherapy, targeted therapy has greater impact in cancer management. Owing to the recent advancements in proteomics, we aimed to mine and re-interrogate the Clinical Proteomic Tumor Analysis Consortium (CPTAC) data sets which contain deep scale, mass spectrometry (MS)-based proteomic and phosphoproteomic data sets conducted on human tumor samples. Quantitative proteomic and phosphoproteomic data sets of tumor samples were explored and downloaded from the CPTAC database for six different cancers types (breast cancer, clear cell renal cell carcinoma (CCRCC), colon cancer, lung adenocarcinoma (LUAD), ovarian cancer, and uterine corpus endometrial carcinoma (UCEC)). We identified 880 phosphopeptide signatures for differentially regulated phosphorylation sites across five cancer types (breast cancer, colon cancer, LUAD, ovarian cancer, and UCEC). We identified the cell cycle to be aberrantly activated across these cancers. The correlation of proteomic and phosphoproteomic data sets identified changes in the phosphorylation of 12 kinases with unchanged expression levels. We further investigated phosphopeptide signature across five cancer types which led to the prediction of aurora kinase A (AURKA) and kinases-serine/threonine-protein kinase Nek2 (NEK2) as the most activated kinases targets. The drug designed for these kinases could be repurposed for treatment across cancer types.


Subject(s)
Aurora Kinase A/metabolism , Enzyme Activation , NIMA-Related Kinases/metabolism , Neoplasms/metabolism , Phosphoproteins/metabolism , Cell Cycle , Humans , Neoplasms/enzymology , Protein Interaction Maps , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...